Citation: | Wenqiang Zhao. REGULAR DYNAMICS AND BOX-COUNTING DIMENSION FOR A RANDOM REACTION-DIFFUSION EQUATION ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 422-444. doi: 10.11948/20200054 |
[1] | L. Arnold, Random Dynamical System, Springer-Verlag, Berlin, 1998. |
[2] | M. Böhm and B. Schmalfuss, Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24, 3115-3138. |
[3] | D. Cao, C. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 2015, 259(3), 838-872. doi: 10.1016/j.jde.2015.02.020 |
[4] | A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, vol. 184, Springer, 2013. |
[5] | I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. |
[6] | H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 1994, 100, 365-393. doi: 10.1007/BF01193705 |
[7] | H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equat., 1997, 9, 307-341. doi: 10.1007/BF02219225 |
[8] | H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 2018, 265, 702-718. |
[9] | H. Cui, J. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 2016, 140, 208-235. doi: 10.1016/j.na.2016.03.012 |
[10] |
H. Cui, P. E. Kloeden and W. Zhao, Strong $(L.2, L.\gamma\cap H_0.1) $-continuity in initial data for nonlinear reaction-diffusion equation in any space domain, Electronic Research Archive, 2020, 28(3), 1357-1374. doi: 10.3934/era.2020072
CrossRef $(L.2, L.\gamma\cap H_0.1) $-continuity in initial data for nonlinear reaction-diffusion equation in any space domain" target="_blank">Google Scholar |
[11] | H. Cui, J. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dyn. Diff. Equat., 2018, 30, 1873-1898. doi: 10.1007/s10884-017-9617-z |
[12] | B. Gess, W. Liu and A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differential Equations, 2020, 269, 3414-3455. doi: 10.1016/j.jde.2020.03.002 |
[13] | A. Gu, D. Li, B. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on ${\mathbb{R}}^N $, J. Differential Equations, 2018, 264, 7094-7137. doi: 10.1016/j.jde.2018.02.011 |
[14] | M. Gyllenberg, J. Jiang and L. Niu, Chaotic attractors in the four-dimensional Leslie-Gower competition model, Physica D: Nonlinear Phenomena, 2020, 402, 132186. doi: 10.1016/j.physd.2019.132186 |
[15] | B. Hunt and V. Y. Kaloshin, Regularity of embeddings of inifinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 1999, 12, 1263-1275. doi: 10.1088/0951-7715/12/5/303 |
[16] | J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl., 2006, 85, 269-294. doi: 10.1016/j.matpur.2005.08.001 |
[17] | Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21, 1203-1223. doi: 10.3934/dcdsb.2016.21.1203 |
[18] | Y. Li, A. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 2015, 258, 504-534. doi: 10.1016/j.jde.2014.09.021 |
[19] | Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 2008, 245, 1775-1800. doi: 10.1016/j.jde.2008.06.031 |
[20] | K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 2019, 31, 1341-1371. |
[21] | K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differential Equations, 2011, 251, 2853-2895. doi: 10.1016/j.jde.2011.05.032 |
[22] | J. C. Robinson, Infnite-Dimensional Dyanmical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. |
[23] | A. S. Sajna, T. P. Polak, A. Wojcik and et al, Attractors and asymptotic dynamics of open discrete-time quantum walks on cycles, Physical Review A, 2019, 100, 052111. doi: 10.1103/PhysRevA.100.052111 |
[24] | B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations, in: V. Reitmann, T. Riedrich, N. Koksch (Eds.), International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Technische Universität, Dresden, 1992, pp: 185-192. |
[25] | J. Shen, K. Lu and W. Zhang, Heteroclinic chaotic behavior driven by a Brownian motion, J. Differential Equations, 2013, 255, 4185-4225. doi: 10.1016/j.jde.2013.08.003 |
[26] | J. L. Shomberg, Attractors for damped semilinear wave equations with a RobinšCacoustic boundary perturbation, Nonlinear Anal., 2019, 189, 111582. doi: 10.1016/j.na.2019.111582 |
[27] | C. Sun and W. Tan, Non-autonomous reaction-diffusion model with dynamic boundary conditions, J. Math. Anal. Appl., 2016, 443, 1007-1032. doi: 10.1016/j.jmaa.2016.05.054 |
[28] | T. Trujillo and B. Wang, Continuity of strong solutions of the reaction-diffusion equation in the initial data, Nonlinear Anal., 2008, 69, 2525-2532. doi: 10.1016/j.na.2007.08.032 |
[29] | B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 2014, 14, 1450009. doi: 10.1142/S0219493714500099 |
[30] | B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 2012, 253, 1544-1583. doi: 10.1016/j.jde.2012.05.015 |
[31] | X. Wang, K. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 2018, 264, 378-424. doi: 10.1016/j.jde.2017.09.006 |
[32] | Z. Wang and L. Zhang, Finite fractal dimension of random attractor for stochastic non-autonomous strongly damped wave equation, Comput. Math. Appl., 2018, 75, 3343-3357. doi: 10.1016/j.camwa.2018.02.002 |
[33] |
M. Yang, C. Sun and C. Zhong, Existence of a global attractor for a $p $-Laplacian equation in ${\mathbb{R}}^N $, Nonlinear Anal., 2007, 66(1), 1-13. doi: 10.1016/j.na.2005.11.004
CrossRef $p $-Laplacian equation in |
[34] |
M. Yang, C. Sun and C. Zhong, Global attractor for $p $-Laplacian equation, J. Math. Anal. Appl., 2007, 327(2), 1130-1142. doi: 10.1016/j.jmaa.2006.04.085
CrossRef $p $-Laplacian equation" target="_blank">Google Scholar |
[35] | J. Yin, Y. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl. 2017, 450, 1180-1207. doi: 10.1016/j.jmaa.2017.01.064 |
[36] | W. Zhao and Y. Zhang, Higher-orderWong-Zakai approximations of stochastic reaction-diffusion equations on ${\mathbb{R}}^N $, Physica D: Nonlinear Phenomena, 2020, 401, 132147. |
[37] | W. Zhao and Y. Zhang, Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space $\ell_\rho.p $, Applied Math. Comput., 2016, 291, 226-243. |
[38] |
W. Zhao, Random dynamics of stochastic $p $-Laplacian equations on ${\mathbb{R}}^N $ with an unbounded additive noise, J. Math. Anal. Appl., 2017, 455, 1178-1203. doi: 10.1016/j.jmaa.2017.06.025
CrossRef $p $-Laplacian equations on |
[39] |
W. Zhao, Long-time random dynamics of stochastic parabolic $p $-Laplacian equations on ${\mathbb{R}}^N $, Nonliner Anal., 2017, 152, 196-219.
$p $-Laplacian equations on |
[40] |
W. Zhao, Random dynamics of non-autonomous semi-linear degenerate parabolic equations on ${\mathbb{R}}^N$ driven by an unbounded additive noise, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23, 2499-2526.
${\mathbb{R}}^N $ driven by an unbounded additive noise" target="_blank">Google Scholar |
[41] | S. Zhou, Y. Tian and Z. Wang, Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations, Applied Math. Comput., 2016, 276, 80-95. |
[42] | S. Zhou and Z. Wang, Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise, J. Math. Anal. Appl., 2016, 44, 648-667. |
[43] | K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in ${\mathbb{R}}^N $, Comput. Math. Appl., 2016, 71, 2089-2105. doi: 10.1016/j.camwa.2016.04.004 |