Citation: | Adnan Khaliq, Mujeeb ur Rehman. EXISTENCE OF WEAK SOLUTIONS FOR Ψ-CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM VIA VARIATIONAL METHODS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1768-1778. doi: 10.11948/20200115 |
This article is about a ψ-Caputo fractional boundary value problem which is investigated with the help of variational methods and critical point theory. A touchstone is obtained on the existence of the solution of the problem with the help of a functional. The problem is reduced into an equivalent form such that the solutions of the problem coincide with the critical points of a functional. Using aid from critical point theory, sufficient conditions are obtained for the existence of at least one solution. In the end, an example is also given to enrich our results.
[1] | M. S. Abdo, K. Shah, S. K. Panchal and H. A. Wahash, Existence and ulam stability results of a coupled system for terminal value problems involving ψ-hilfer fractional operator, Adv. Differ. Equ., 2020, 316, 1-21. doi: 10.1186/s13662-020-02775-x |
[2] | M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah and F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons, Fractals, 2020, 141, 110341. doi: 10.1016/j.chaos.2020.110341 |
[3] | M. S. Abdo, S. K. Panchal and H. A. Wahash, Ulam-hyers-mittag-leffler sta-bility for a ψ-hilfer problem with fractional order and infinite delay, Results Appl. Math., 2020, 7, 100115. doi: 10.1016/j.rinam.2020.100115 |
[4] | M. S. Abdo, T. Abdeljawad, K. Shah and F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 2020, 6(10), e05109. doi: 10.1016/j.heliyon.2020.e05109 |
[5] | Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a gronwall type inequality with applications, FILOMAT, 2017, 31(17), 5457- 5473. doi: 10.2298/FIL1717457A |
[6] | Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 2016, 21(1), 661-681. |
[7] | R. Almeida, Caputo fractional derivative of a function with respect to another function, Comm. Non. Sci. Num. Simul., 2017, 44, 460-481. doi: 10.1016/j.cnsns.2016.09.006 |
[8] | N. T. Dung, Fractional stochastic differential equations with applications to finance, J. Math. Anal. Appl., 2013, 397, 334-348. doi: 10.1016/j.jmaa.2012.07.062 |
[9] | C. Fang, H. Sun and J. Gu, Application of fractional calculus methods to vis-coelastic response of amorphous shape memory polymers, J. Mech., 2015, 31, 427-432. doi: 10.1017/jmech.2014.98 |
[10] | Y. Y. Gambo, F. Jarad, D. Baleanu and T. Abdeljawad, Fractional vector calculus in the frame of a generalized Caputo fractional derivative, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2018, 80(4), 219-228. |
[11] | Y. Y. Gambo, R. Ameen, F. Jarad, D. Baleanu and T. Abdeljawad, Exis-tence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives, Adv. Differ. Equ., 2018, 134. https://doi.org/10.1186/s13662-018-1594-y. doi: 10.1186/s13662-018-1594-y |
[12] | F. Jarad and T. Abdeljawad, Generalized fractional derivatives and laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 2020, 13(3), 709-722. |
[13] | F. Jarad, T. Abdeljawad and D. Baleanu, Higher order fractional variational optimal control problems with delayed arguments, Appl. Math. Comput., 2012, 218(18), 9234-9240. |
[14] | F. Jarad, T. Abdeljawad and D. Baleanu, Fractional variational principles with delay within caputo derivatives, Rep. Math. Phys., 2010, 1(65), 17-28. |
[15] | F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional deriva-tives and their caputo modification, J. Nonlinear Sci. Appl., 2017, 10(5), 2607-2619. doi: 10.22436/jnsa.010.05.27 |
[16] | F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of frac-tional operators, Adv. Differ. Equ., 2017, 1-16. |
[17] | F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181- 1199. doi: 10.1016/j.camwa.2011.03.086 |
[18] | F. Jiao and Y. Zhou Existence results for fractional boundary value problem via critical point theory, Internet. J. Bifur. Chous Appl. Sci. Engrg., 2012, 22, 17. |
[19] | A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 2018, 83, 95-102. doi: 10.1016/j.aml.2018.03.014 |
[20] | A. A. Kilbas, M. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amesterdam, 2006. |
[21] | V. Lashmikantham, S. Leela and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge, 2009. |
[22] | P. Li, C. Xu and H. Wang, Weak solutions to boundary value problems for fractional differential equations via variational methods, J. Nonlinear Sci. Appl., 2016, 9, 2971-2981. doi: 10.22436/jnsa.009.05.89 |
[23] | R. L. Magin, C. Ingo, L. C. Perez, W. Triplett and T. H. Mareci, Charac-terization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Microporous and Mesoporous Mater., 2013, 178, 39-43. doi: 10.1016/j.micromeso.2013.02.054 |
[24] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, NewYark, 1989. |
[25] | T. J. Osler, Fractional derivatives of a composite function, SIAM J. Math. Anal., 1970, 1, 288-293. doi: 10.1137/0501026 |
[26] | I. Pudlubny, Fractional Differential Equations, Math. Sci. Eng., Academic Press, New York, 1999. |
[27] | A. Sapora, A. Cornetti, A. Carpinteri, O. Baglieri and E. Santagata, The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders, Mater. Structures, 2014, 49, 45-55. doi: 10.1617/s11527-014-0473-6 |
[28] | A. Seemab and M. U. Rehman, A note on fractional Duhamel's principle and its application to a class of fractional partial differential equations, Appl. Math. Lett., 2017, 64, 8-14. doi: 10.1016/j.aml.2016.08.002 |
[29] | S. A. H. Shah and M. U. Rehman, A note on terminal value problems for fractional differential equations on infinite interval, Appl. Math. Lett., 2016, 52, 118-125. doi: 10.1016/j.aml.2015.08.008 |
[30] | V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Beijing, 2011. |
[31] | G. S. Teodoro, J. A. T. Machado and E. C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 2019, 388, 195-208. doi: 10.1016/j.jcp.2019.03.008 |
[32] | G. Wu, D. Zeng and D. Baleanu, Fractional impulsive differential equations: Exact solutions, integral equations and short memory case, Fractional Calc. and Appl. Anal., 2019, 22, 180-192. doi: 10.1515/fca-2019-0012 |
[33] | Q. Yu, F. Liu, I. Turner, K. Burrage and V. Vegh, The use of a riesz frac-tional differential based approach for texture enhancement in image processing, ANZIAM J., 2012, 54, C590-C607. |
[34] | Y. Zhao, H. Chen and B. Qin, Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl. Math. Comput., 2015, 257, 417-427. |