2021 Volume 11 Issue 4
Article Contents

Adnan Khaliq, Mujeeb ur Rehman. EXISTENCE OF WEAK SOLUTIONS FOR Ψ-CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM VIA VARIATIONAL METHODS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1768-1778. doi: 10.11948/20200115
Citation: Adnan Khaliq, Mujeeb ur Rehman. EXISTENCE OF WEAK SOLUTIONS FOR Ψ-CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM VIA VARIATIONAL METHODS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1768-1778. doi: 10.11948/20200115

EXISTENCE OF WEAK SOLUTIONS FOR Ψ-CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM VIA VARIATIONAL METHODS

  • This article is about a ψ-Caputo fractional boundary value problem which is investigated with the help of variational methods and critical point theory. A touchstone is obtained on the existence of the solution of the problem with the help of a functional. The problem is reduced into an equivalent form such that the solutions of the problem coincide with the critical points of a functional. Using aid from critical point theory, sufficient conditions are obtained for the existence of at least one solution. In the end, an example is also given to enrich our results.

    MSC: 26A33, 34A08, 46E15, 58K05
  • 加载中
  • [1] M. S. Abdo, K. Shah, S. K. Panchal and H. A. Wahash, Existence and ulam stability results of a coupled system for terminal value problems involving ψ-hilfer fractional operator, Adv. Differ. Equ., 2020, 316, 1-21. doi: 10.1186/s13662-020-02775-x

    CrossRef Google Scholar

    [2] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah and F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons, Fractals, 2020, 141, 110341. doi: 10.1016/j.chaos.2020.110341

    CrossRef Google Scholar

    [3] M. S. Abdo, S. K. Panchal and H. A. Wahash, Ulam-hyers-mittag-leffler sta-bility for a ψ-hilfer problem with fractional order and infinite delay, Results Appl. Math., 2020, 7, 100115. doi: 10.1016/j.rinam.2020.100115

    CrossRef Google Scholar

    [4] M. S. Abdo, T. Abdeljawad, K. Shah and F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 2020, 6(10), e05109. doi: 10.1016/j.heliyon.2020.e05109

    CrossRef Google Scholar

    [5] Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a gronwall type inequality with applications, FILOMAT, 2017, 31(17), 5457- 5473. doi: 10.2298/FIL1717457A

    CrossRef Google Scholar

    [6] Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 2016, 21(1), 661-681.

    Google Scholar

    [7] R. Almeida, Caputo fractional derivative of a function with respect to another function, Comm. Non. Sci. Num. Simul., 2017, 44, 460-481. doi: 10.1016/j.cnsns.2016.09.006

    CrossRef Google Scholar

    [8] N. T. Dung, Fractional stochastic differential equations with applications to finance, J. Math. Anal. Appl., 2013, 397, 334-348. doi: 10.1016/j.jmaa.2012.07.062

    CrossRef Google Scholar

    [9] C. Fang, H. Sun and J. Gu, Application of fractional calculus methods to vis-coelastic response of amorphous shape memory polymers, J. Mech., 2015, 31, 427-432. doi: 10.1017/jmech.2014.98

    CrossRef Google Scholar

    [10] Y. Y. Gambo, F. Jarad, D. Baleanu and T. Abdeljawad, Fractional vector calculus in the frame of a generalized Caputo fractional derivative, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2018, 80(4), 219-228.

    Google Scholar

    [11] Y. Y. Gambo, R. Ameen, F. Jarad, D. Baleanu and T. Abdeljawad, Exis-tence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives, Adv. Differ. Equ., 2018, 134. https://doi.org/10.1186/s13662-018-1594-y. doi: 10.1186/s13662-018-1594-y

    CrossRef Google Scholar

    [12] F. Jarad and T. Abdeljawad, Generalized fractional derivatives and laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 2020, 13(3), 709-722.

    Google Scholar

    [13] F. Jarad, T. Abdeljawad and D. Baleanu, Higher order fractional variational optimal control problems with delayed arguments, Appl. Math. Comput., 2012, 218(18), 9234-9240.

    Google Scholar

    [14] F. Jarad, T. Abdeljawad and D. Baleanu, Fractional variational principles with delay within caputo derivatives, Rep. Math. Phys., 2010, 1(65), 17-28.

    Google Scholar

    [15] F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional deriva-tives and their caputo modification, J. Nonlinear Sci. Appl., 2017, 10(5), 2607-2619. doi: 10.22436/jnsa.010.05.27

    CrossRef Google Scholar

    [16] F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of frac-tional operators, Adv. Differ. Equ., 2017, 1-16.

    Google Scholar

    [17] F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181- 1199. doi: 10.1016/j.camwa.2011.03.086

    CrossRef Google Scholar

    [18] F. Jiao and Y. Zhou Existence results for fractional boundary value problem via critical point theory, Internet. J. Bifur. Chous Appl. Sci. Engrg., 2012, 22, 17.

    Google Scholar

    [19] A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 2018, 83, 95-102. doi: 10.1016/j.aml.2018.03.014

    CrossRef Google Scholar

    [20] A. A. Kilbas, M. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amesterdam, 2006.

    Google Scholar

    [21] V. Lashmikantham, S. Leela and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge, 2009.

    Google Scholar

    [22] P. Li, C. Xu and H. Wang, Weak solutions to boundary value problems for fractional differential equations via variational methods, J. Nonlinear Sci. Appl., 2016, 9, 2971-2981. doi: 10.22436/jnsa.009.05.89

    CrossRef Google Scholar

    [23] R. L. Magin, C. Ingo, L. C. Perez, W. Triplett and T. H. Mareci, Charac-terization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Microporous and Mesoporous Mater., 2013, 178, 39-43. doi: 10.1016/j.micromeso.2013.02.054

    CrossRef Google Scholar

    [24] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, NewYark, 1989.

    Google Scholar

    [25] T. J. Osler, Fractional derivatives of a composite function, SIAM J. Math. Anal., 1970, 1, 288-293. doi: 10.1137/0501026

    CrossRef Google Scholar

    [26] I. Pudlubny, Fractional Differential Equations, Math. Sci. Eng., Academic Press, New York, 1999.

    Google Scholar

    [27] A. Sapora, A. Cornetti, A. Carpinteri, O. Baglieri and E. Santagata, The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders, Mater. Structures, 2014, 49, 45-55. doi: 10.1617/s11527-014-0473-6

    CrossRef Google Scholar

    [28] A. Seemab and M. U. Rehman, A note on fractional Duhamel's principle and its application to a class of fractional partial differential equations, Appl. Math. Lett., 2017, 64, 8-14. doi: 10.1016/j.aml.2016.08.002

    CrossRef Google Scholar

    [29] S. A. H. Shah and M. U. Rehman, A note on terminal value problems for fractional differential equations on infinite interval, Appl. Math. Lett., 2016, 52, 118-125. doi: 10.1016/j.aml.2015.08.008

    CrossRef Google Scholar

    [30] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Beijing, 2011.

    Google Scholar

    [31] G. S. Teodoro, J. A. T. Machado and E. C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 2019, 388, 195-208. doi: 10.1016/j.jcp.2019.03.008

    CrossRef Google Scholar

    [32] G. Wu, D. Zeng and D. Baleanu, Fractional impulsive differential equations: Exact solutions, integral equations and short memory case, Fractional Calc. and Appl. Anal., 2019, 22, 180-192. doi: 10.1515/fca-2019-0012

    CrossRef Google Scholar

    [33] Q. Yu, F. Liu, I. Turner, K. Burrage and V. Vegh, The use of a riesz frac-tional differential based approach for texture enhancement in image processing, ANZIAM J., 2012, 54, C590-C607.

    Google Scholar

    [34] Y. Zhao, H. Chen and B. Qin, Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl. Math. Comput., 2015, 257, 417-427.

    Google Scholar

Article Metrics

Article views(3098) PDF downloads(560) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint