[1]
|
A. Arab, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 1991, 158, 63–79. doi: 10.1016/0022-247X(91)90267-4
CrossRef Google Scholar
|
[2]
|
A. Arab, Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space-time, J. Phys. A: Math. Gen., 2001, 34, 4281. doi: 10.1088/0305-4470/34/20/302
CrossRef Google Scholar
|
[3]
|
R. Cammasa and D. D. Holm, An integrable shallow water equation with peaked solution, Phys. Rev. Lett., 1993, 71, 1161–1164.
Google Scholar
|
[4]
|
R. Cammasa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 1994, 31, 1–33. doi: 10.1016/S0065-2156(08)70254-0
CrossRef Google Scholar
|
[5]
|
E. Fan and M. Yuen, Peakon weak solutions for the rotation-two-component Camassa–Holm system, Appl. Math. Lett, 2019, 97, 53–59. doi: 10.1016/j.aml.2019.05.008
CrossRef Google Scholar
|
[6]
|
L. Fan, H. Gao and Y. Liu, On the rotation-two-component Camassa–Holm system modelling the equatorial water waves, Adv. Math., 2016, 291, 59–89. doi: 10.1016/j.aim.2015.11.049
CrossRef Google Scholar
|
[7]
|
B. A. Kupershmidt, A coupled Korteweg-de Vries equation with dispersion, J. Phys A., 1985, 18, L571–573. doi: 10.1088/0305-4470/18/10/003
CrossRef Google Scholar
|
[8]
|
J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.
Google Scholar
|
[9]
|
J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifur. Chaos, 2007, 17, 4049–4065. doi: 10.1142/S0218127407019858
CrossRef Google Scholar
|
[10]
|
J. Li and Z. Qiao, Bifurcations and exact travelling wave solutions of the generalized two-component Camassa-Holm equation, Int. J. Bifur. Chaos, 2012, 22, 1250305, 1–13. doi: 10.1142/S0218127412503051
CrossRef Google Scholar
|
[11]
|
J. Li, Variform exact one-peakon solutions for some singular nonlinear traveling wave equations of the first kind, Int. J. of Bifurcation and Chaos, 2014, 24, 1450160, 1–15. doi: 10.1142/S0218127414501600
CrossRef Google Scholar
|
[12]
|
J. Li, W. Zhu, and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifur. Chaos, 2016, 26, 1650207. doi: 10.1142/S0218127416502072
CrossRef Google Scholar
|
[13]
|
J. Liang, and J. Li, Bifurcations and exact solutions of nonlinear Schrödinger equation with an anti-cubic nonlinearity, Journal of Applied Analysis and Computation, 2018, 8, 1194–1210.
Google Scholar
|
[14]
|
J. Zhang and C. Dai, Bright and dark optical solitons in the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity, Chinese Optics Letters, 2005, 3, 295–298.
Google Scholar
|