[1]
|
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations. Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.
Google Scholar
|
[2]
|
S.-B. Hsu, H. Smith, and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 1996, 348, 4083–4094. doi: 10.1090/S0002-9947-96-01724-2
CrossRef Google Scholar
|
[3]
|
M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N. S.), 1948, 3, 3–95.
Google Scholar
|
[4]
|
K.-Y. Lam and D. Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. Amer. Math. Soc., 2016, 144, 1153–1159.
Google Scholar
|
[5]
|
K.-Y. Lam and N.-W. Ni, Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 2012, 72, 1695–1712. doi: 10.1137/120869481
CrossRef Google Scholar
|
[6]
|
Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 2014, 69, 1319–1342. doi: 10.1007/s00285-013-0730-2
CrossRef Google Scholar
|
[7]
|
Y. Lou, H. Nie, and Y. E. Wang, Coexistence and bistability of a competition model in open advective evironments, Math. Biosci., 2018, 306, 10–19. doi: 10.1016/j.mbs.2018.09.013
CrossRef Google Scholar
|
[8]
|
Y. Lou, D. M. Xiao, and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 2016, 36, 953–969.
Google Scholar
|
[9]
|
Y. Lou, X.-Q. Zhao, and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 2019, 121, 47–82. doi: 10.1016/j.matpur.2018.06.010
CrossRef Google Scholar
|
[10]
|
Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differential Equations, 2015, 259, 141–171. doi: 10.1016/j.jde.2015.02.004
CrossRef Google Scholar
|
[11]
|
F. Lutscher, M. A. Lewis, and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 2006, 68, 2129–2160. doi: 10.1007/s11538-006-9100-1
CrossRef Google Scholar
|
[12]
|
F. Lutscher, E. McCauley, and M. A. Lewis, Spatial patterns and coexistence mechanisms in rivers, Theor. Pop. Biol., 2007, 71, 267–277. doi: 10.1016/j.tpb.2006.11.006
CrossRef Google Scholar
|
[13]
|
D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 2001, 82, 1219–1237. doi: 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
CrossRef Google Scholar
|
[14]
|
D. Tang and Y. M. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments, J. Differential Equations, 2020, 269, 1465–1483. doi: 10.1016/j.jde.2020.01.011
CrossRef Google Scholar
|
[15]
|
D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 2020, 268, 1570–1599. doi: 10.1016/j.jde.2019.09.003
CrossRef Google Scholar
|
[16]
|
F. Xu and W. Gan, On a Lotka-Volterra type competition model from river ecology, Nonlinear Anal. Real World Appl., 2019, 47, 373–384. doi: 10.1016/j.nonrwa.2018.11.011
CrossRef Google Scholar
|
[17]
|
P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differential Equations, 2016, 55, Art. 137, 29 pp.
Google Scholar
|
[18]
|
P. Zhou and D. M. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 2018, 275, 356–380. doi: 10.1016/j.jfa.2018.03.006
CrossRef Google Scholar
|
[19]
|
P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 2018, 264, 4176–4198. doi: 10.1016/j.jde.2017.12.005
CrossRef Google Scholar
|