Citation: | Liu Xia. THE NUMBER OF LIMIT CYCLES FROM A QUARTIC CENTER BY THE HIGHER-ORDER MELNIKOV FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1405-1421. doi: 10.11948/20200208 |
In this paper, by computing the higher-order Melnikov functions we study the number of limit cycles of the system $ \dot{x} = -y(1+x)^3+\epsilon P(x, y), $ $ \dot{y} = x(1+x)^3-\epsilon Q(x, y) $ where $ P(x, y) $ and $ Q(x, y) $ are arbitrary cubic polynomials. Our main results show that the first four Melnikov functions associated with the perturbed system yield at most five limit cycles.
[1] | R. Asheghi and A. Nabavi, Higher order Melnikov functions for studying limit cycles of some perturbed elliptic Hamiltonian vector fields, Qual. Theory Dyn. Syst., 2019, 18, 289-313. doi: 10.1007/s12346-018-0284-1 |
[2] | R. Asheghi and A. Nabavi, The third order melnikov function of a cubic integrable system under quadratic perturbations, Chaos Solitons Fractals, 2020, 139, 110291. doi: 10.1016/j.chaos.2020.110291 |
[3] | A. Buica, A. Gasull and J. Yang, The third order Melnikov function of a quadratic center under quadratic perturbations, J. Math. Anal. Appl., 2007, 331, 443-454. doi: 10.1016/j.jmaa.2006.09.008 |
[4] | X. Cen, Y. Zhao and H. Liang, Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka–Volterra type with a rational first integral of degree two, J. Math. Anal. Appl., 2015, 425, 788-806. doi: 10.1016/j.jmaa.2014.12.064 |
[5] | X. Cen et al., New family of Abelian integrals satisfying Chebyshev property, J. Diff. Eqs., 2020, 268, 7561-7581. doi: 10.1016/j.jde.2019.11.060 |
[6] | J. P. Françoise, Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergodic Theory Dynam. Systems, 1996, 16, 87-96. doi: 10.1017/S0143385700008725 |
[7] | L. Gavrilov and I. D. Iliev, Cubic perturbations of elliptic Hamiltonian vector fields of degree three, J. Diff. Eqs., 2016, 260, 3963-3990. doi: 10.1016/j.jde.2015.10.052 |
[8] | M. Grau and J. Villadelprat, Bifurcation of critical periods from Pleshkan's isochrones, J. London Math. Soc., 2010, 81, 142-160. doi: 10.1112/jlms/jdp062 |
[9] | I. D. Iliev, On second order bifurcations of limit cycles, J. London Math. Soc., 1998, 58, 353-366. doi: 10.1112/S0024610798006486 |
[10] | I. D. Iliev, On the limit cycles available from polynomial perturbations of the Bogdanov-Takens Hamiltonian, Israel J. Math., 2000, 115, 269-284. doi: 10.1007/BF02810590 |
[11] | J. Llibre et al. Averaging analysis of a perturbated quadratic center, Nonlinear Anal., 2001, 46, 45-51. doi: 10.1016/S0362-546X(99)00444-7 |
[12] | S. Li et al, On the limit cycles of planar polynomial system with non-rational first integral via averaging method at any order, Appl. Math. Comput., 2015, 256, 876-880. |
[13] | F. Mañosas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Diff. Eqs., 2011, 251, 1656-1669. doi: 10.1016/j.jde.2011.05.026 |
[14] | X. Sun and P. Yu, Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4, J. Diff. Eqs., 2019, 267, 7369-7384. doi: 10.1016/j.jde.2019.07.023 |
[15] | X. Sun, Exact bound on the number of limit cycles arising from a periodic annulus bounded by a symmetric heteroclinic loop, J. Appl. Anal. Comput., 2020, 10(1), 378-390. |
[16] | Y. Tian and P. Yu, Bifurcation of ten small-amplitude limit cycles by perturbing a quadratic Hamiltonian system with cubic polynomials , J. Diff. Eqs., 2016, 260, 971-990. doi: 10.1016/j.jde.2015.09.016 |
[17] | G. Tigan, Using Melnikov functions of any order for studying limit cycles, J. Math. Anal. Appl., 2017, 448, 409-420. doi: 10.1016/j.jmaa.2016.11.021 |
[18] | P. Yang and J. Yu, The number of limit cycles from a cubic center by the Melnikov function of any order, J. Diff. Eqs., 2020, 268, 1463-1494. doi: 10.1016/j.jde.2019.08.053 |