Citation: | Pierre Gaillard. MULTIPARAMETRIC SOLUTIONS TO THE GARDNER EQUATION AND THE DEGENERATE RATIONAL CASE[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 2102-2113. doi: 10.11948/20200332 |
We construct solutions to the Gardner equation in terms of trigonometric and hyperbolic functions, depending on several real parameters. Using a passage to the limit when one of these para-meters goes to zhongwenzy, we get, for each positive integer $N$, rational solutions as a quotient of polynomials in $x$ and $t$ depending on 2$N$ parameters. We construct explicit expressions of these rational solutions for orders $N=1$ until $N=3$.
We easily deduce solutions to the mKdV equation in terms of wronskians as well as rational solutions depending on 2$N$ real parameters.
[1] | J. R. Apel, L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch, Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 2007, 121, 695-722. doi: 10.1121/1.2395914 |
[2] | M. H. Alford, T. Peacock and T. Tang, The formation and fate of internal waves in the South China Sea, Nature, 2015, 521, 65-69. doi: 10.1038/nature14399 |
[3] | M. Coffey, On series expansions giving closed-form solutions of Korteweg-de Vries-like equations, J. Appll. Math., 1990, 50(6), 1580-1592. |
[4] | E. Demler and A. Maltsev, Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices, Ann. Phys., 2011, 326, 1775-1805. doi: 10.1016/j.aop.2011.04.001 |
[5] | R. Grimshaw, Environmental Stratified Flows, Topics in Environmental Fluid Mechanics, Kluwer, 2002. |
[6] | R. Grimshaw, D. Pelinovsky, E. Pelinovsky and T. Talipova, Wave Group Dynamics in Weakly Nonlinear Long-Wave Models, Phys. D, 2001, 159, 35-37. doi: 10.1016/S0167-2789(01)00333-5 |
[7] | K. R. Helfrich and W. K. Melville, Long nonlinear internal waves, Annu. Rev. Fluid Mech., 2006, 38, 395-425. doi: 10.1146/annurev.fluid.38.050304.092129 |
[8] | A. H. Khater, A. A. Abdallah, O. H. El-Kalaawy and D. K. Callebaut, Bäcklund transformations, a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions, Phys. Plasmas, 1999, 6, 4542-4547. doi: 10.1063/1.873741 |
[9] | M. Y. Kulikov and G. M. Fraiman, Preprint of the Institute of Applied Physics, Russian Academy of Sciences, 1996, N. 404, Nizhni Novgorod. |
[10] | S. Lou and L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation, Math Meth. Appl. Sci., 1994, 17, 339-347. doi: 10.1002/mma.1670170503 |
[11] | V. B. Matveev and M. A. Salle, Darboux transformations and solitons, Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991. |
[12] | R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-deVries equation andgeneralizations. Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys., 1968, 9, 1204-1209. doi: 10.1063/1.1664701 |
[13] | M. S. Ruderman, T. Talipova, and E. Pelinovsky, Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions, J. Plasma Phys., 2008, 74, 639-656. doi: 10.1017/S0022377808007150 |
[14] | A. V. Slyunyaev and E. N. Pelinovski, Dynamics of large amplitude solitons, Jour. Of Exp. And Theo. Phys., 1999, 89(1), 173-181. doi: 10.1134/1.558966 |
[15] | S. Watanabe, Ion Acoustic Soliton in Plasma with Negative Ion, J. Phys. Soc. Japan, 1984, 53, 950-956. doi: 10.1143/JPSJ.53.950 |
[16] | M. Wadati, Wave propagation in nonlinear lattice III, J. Phys. Soc. Jpn., 1975, 38, 681-686. |
[17] | J. Zhang, New Solitary Wave Solution of the Combined KdV and mKdV Equation, Int. Jour. Of Theo. Phys., 1998, 37, 1541-1546. doi: 10.1023/A:1026615919186 |