2021 Volume 11 Issue 4
Article Contents

Muhammad Ramzan, Yu-Ming Chu, Hamood ur Rehman, Muhammad Shoaib Saleem, Choonkil Park. SOLITON SOLUTIONS FOR ANTI-CUBIC NONLINEARITY USING THREE ANALYTICAL APPROACHES[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 2177-2192. doi: 10.11948/20200380
Citation: Muhammad Ramzan, Yu-Ming Chu, Hamood ur Rehman, Muhammad Shoaib Saleem, Choonkil Park. SOLITON SOLUTIONS FOR ANTI-CUBIC NONLINEARITY USING THREE ANALYTICAL APPROACHES[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 2177-2192. doi: 10.11948/20200380

SOLITON SOLUTIONS FOR ANTI-CUBIC NONLINEARITY USING THREE ANALYTICAL APPROACHES

  • In this article, three constructive techniques namely, Expa-function method, the modified Kudryashov method and the generalized tanh-method are adopted to analyze the nonlinear Schrödinger equation having anti-cubic nonlinearity. Nonlinear Schrödinger equation is a comprehensive model that governs wave behavior in optical fiber. Cubic-quintic nonlinear Schrödinger equation, additionally having anti-cubic nonlinear term is investigated to construct bright, dark, kink and singular soliton solutions. The graphical representations of the soliton propagation are also demonstrated by the solutions obtained using these three techniques.

    MSC: 35A09, 35C07, 35C08, 35K05, 35P99
  • 加载中
  • [1] M. A. Abdou, The extended tanh method and its applications for solving nonlinear physical models, Appl. Math. Comput., 2007, 190(1), 988-996.

    Google Scholar

    [2] A. Akgul and E. Karatas, Reproducing kernel functions for difference equations, Disc. Cont. Dyn. Syst., 2015, 8(6), 1055-1064.

    Google Scholar

    [3] A. Akgul, Y. Khan, E. Karatas, D. Baleanu and M. M. Al Qurashi, Solutions of nonlinear systems by reproducing kernel method, J. Nonlinear Sci. Appl., 2017, 10, 4408-4417. doi: 10.22436/jnsa.010.08.33

    CrossRef Google Scholar

    [4] J. Akter and M. A. Akbar, Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method, Results Phys., 2015, 5, 125-130. doi: 10.1016/j.rinp.2015.01.008

    CrossRef Google Scholar

    [5] A. T. Ali and E. R. Hassan, General Expa-function method for nonlinear evolution equations, Appl. Math. Comput., 2010, 217(2), 451-459.

    Google Scholar

    [6] E. C. Aslan, M. Inc and D. Baleanu, Optical solitons and stability analysis of the NLSE with anti-cubic nonlinearity, Superlattice. Microst., 2017, 109, 784-793. doi: 10.1016/j.spmi.2017.06.003

    CrossRef Google Scholar

    [7] A. U. Awan, M. Tahir and H. U. Rehman, On traveliing wave solutions: the Wu-Zhang system describing dispersive long waves, Mod. Phys. Lett. B, 2019, 33(6), 1950059. doi: 10.1142/S0217984919500593

    CrossRef Google Scholar

    [8] A. El Achab, Constructing of exact solutions to the nonlinear Schrödinger equation (NLSE) with power-law nonlinearity by the Weierstrass elliptic function method, Optik, 2016, 127(3), 1229-1232. doi: 10.1016/j.ijleo.2015.10.213

    CrossRef Google Scholar

    [9] A. Biswas, M. Ekici, A. Sonmezoglu and M. Belic, Chirped and chirp-free optical solitons with generalized anti-cubic nonlinearity by extended trial function scheme, Optik, 2019, 178, 636-644. doi: 10.1016/j.ijleo.2018.09.045

    CrossRef Google Scholar

    [10] A. Biswas, A. J. M. Jawad, and Q. Zhou, Resonant optical solitons with anti-cubic nonlinearity, Optik, 2018, 157, 525-531. doi: 10.1016/j.ijleo.2017.11.125

    CrossRef Google Scholar

    [11] A. Biswas, Q. Zhou, S. P. Moshokoa, H. Triki, M. Belic and R. T. Alqahtani, Resonant 1- soliton solution in anti-cubic nonlinear medium with perturbations, Optik, 2017, 145, 14-17. doi: 10.1016/j.ijleo.2017.07.036

    CrossRef Google Scholar

    [12] A. Biswas, Q. Zhou, M. Z. Ullah, H. Triki, S. P. Moshokoa and M. Belic, Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle, Optik, 2017, 143, 131-134. doi: 10.1016/j.ijleo.2017.06.087

    CrossRef Google Scholar

    [13] C. Dai and Y. Wang, Infinite generation of soliton-like solutions for complex nonlinear evolution differential equations via the NLSE based constructive method, Appl. Math. Comput., 2014, 236(1), 606-612.

    Google Scholar

    [14] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd and J. S. Aitchison, Discrete Spatial Optical Solitons in Waveguide Arrays, Phys. Rev. Lett., 1998, 81(16), 33-83.

    Google Scholar

    [15] M. Ekici, M. Mirzazadeh, A. Sonmezoglu, M. Z. Ullah, Q. Zhou, H. Triki, S. P. Moshokoa and A. Biswas, Optical solitons with anti-cubic nonlinearity by extended trial equation method, Optik, 2017, 136, 368-373. doi: 10.1016/j.ijleo.2017.02.004

    CrossRef Google Scholar

    [16] M. Ekici, M. Mirzazadeh, A. Sonmezoglu, Q. Zhou, S. P. Moshokoa, A. Biswas and M. Belic, Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended (G'/G)-expansion scheme, Optik, 2016, 127, 10490-10497. doi: 10.1016/j.ijleo.2016.08.074

    CrossRef Google Scholar

    [17] M. Eslami, Trial solution technique to chiral nonlinear Schrödinger equation in (1+2)- dimensions, Nonlinear Dyn., 2016, 85, 813-816. doi: 10.1007/s11071-016-2724-2

    CrossRef Google Scholar

    [18] M. Eslami, M. Mirzazadeh and A. Biswas, Soliton solutions of the resonant nonlinear Schrodinger's equation in optical fibers with time-dependent coefficients by simplest equation approach, J. Mod. Opt., 2013, 60, 1627-1636. doi: 10.1080/09500340.2013.850777

    CrossRef Google Scholar

    [19] M. Eslami, M. Mirzazadeh and A. Biswas, Optical solitons for the resonant nonlinear Schrodinger's equation with time-dependent coefficients by the first integral method, Optik, 2013, 125, 3107-3116.

    Google Scholar

    [20] R. Fedele, H. Schamel, V. I. Karpman and P. K. Shukla, Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity, J. Phys. A: Math. Gen., 2003, 36(4), 1169-1173. doi: 10.1088/0305-4470/36/4/322

    CrossRef Google Scholar

    [21] Y. Guo and Y. Wang, On Weierstrass elliptic function solutions for a (N+1) dimensional potential KdV equation, Appl. Math. Comput., 2011, 217(20), 8080-8092.

    Google Scholar

    [22] Q. M. U. Hasan, H. Naher, F. Abdullah and S. T. Mohyud-Din, Solutions of the nonlinear evolution equation via the generalized Riccati equation mapping together with the (G'/G)-expansion method, J. Comput. Anal. Appl., 2016, 21(1), 62-82.

    Google Scholar

    [23] K. Hosseini, P. Mayeli and R. Ansari, Modified Kudryashov method for solving the conformable timefractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optik, 2016, 130, 737-742.

    Google Scholar

    [24] M. Inc, M. T. Gencoglu and A. Akgul, Application of extended Adomian decomposition method and extended variational iteration method to Hirota-Satsuma coupled kdv equation, J. Adv. Phys., 2017, 6(2), 216-222. doi: 10.1166/jap.2017.1326

    CrossRef Google Scholar

    [25] M. Inc, B. Kilic, E. Karatas and A. Akgul, Solitary Wave Solutions for the Sawada-Kotera Equation, J. Adv. Phys., 2017, 6(2), 288-293. doi: 10.1166/jap.2017.1318

    CrossRef Google Scholar

    [26] M. Inc, A. Yusuf, A. Aliyu and D. Baleanu, Dark and singular optical solitons for the conformable space-time nonlinear Schrodinger equation with Kerr and power law nonlinearity, Optik, 2018, 162, 65-75. doi: 10.1016/j.ijleo.2018.02.085

    CrossRef Google Scholar

    [27] A. Jamaludin, K. Naganthran, R. Nazar and I. Pop, MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink, Eur. J. Mech. B Fluids, 2020, 84, 71-80. doi: 10.1016/j.euromechflu.2020.05.017

    CrossRef Google Scholar

    [28] E. V. Krishnan, A. Biswas, Q. Zhou and M. M. Babatin, Optical solitons with anti-cubic nonlinearity by mapping methods, Optik, 2018, 170, 520-526. doi: 10.1016/j.ijleo.2018.06.010

    CrossRef Google Scholar

    [29] J. Manafian, Optical soliton solutions for Schrdinger type nonlinear evolution equations by the tan(φ/2)-expansion method, Optik, 2016, 127, 4222-4245. doi: 10.1016/j.ijleo.2016.01.078

    CrossRef Google Scholar

    [30] M. Matinfar and M. Ghanbari, Homotopy perturbation method for the Fisher's equation and its generalized form, Int. J. Nonlinear Sci., 2009, 8(4), 448-55.

    Google Scholar

    [31] M. Mirzazadeh, R. T. Alqahtani and A. Biswas, Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati-Bernoulli sub-ODE method and Kudryashov's scheme, Optik, 2017, 145, 74-78. doi: 10.1016/j.ijleo.2017.07.011

    CrossRef Google Scholar

    [32] S. T. Mohyud-Din, Y. Khan, N. Faraz and A. Yildirim, Exp-function method for solitary and periodic solutions of Fitzhugh-Nagumo equation, Int. J. Numer. Method H., 2012, 22(3), 335-341. doi: 10.1108/09615531211208042

    CrossRef Google Scholar

    [33] S. T. Mohyud-Din, E. Negahdary and M. Usman, Emerald Article: A meshless numerical solution of the family of generalized fifth-order Korteweg-de Vries equations, Int. J. Numer. Method H., 2012, 22(5), 641-658. doi: 10.1108/09615531211231280

    CrossRef Google Scholar

    [34] S. T. Mohyud-Din, M. A. Noor, K. I. Noor and M. M. Hosseini, Variational iteration method for re-formulated partial differential equations, Int. J. Nonlinear Sci. Numer. Simul., 2010, 11(2), 87-92.

    Google Scholar

    [35] S. T. Mohyud-Din, A. Yildirim and S. A. Sezer, Numerical soliton solutions of improved Boussinesq equation, Int. J. Numer. Method H., 2011, 21(7), 822-827. doi: 10.1108/09615531111162800

    CrossRef Google Scholar

    [36] M. A. Noor, S. T. Mohyud-Din, A. Waheed and E. A. Al-Said, Exp-function method for traveling wave solutions of nonlinear evolution equations, Appl. Math. Comput., 2012, 216(2), 477-483.

    Google Scholar

    [37] M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami and Q. Zhou, The unified method for conformable time fractional Schrodinger equation with perturbation terms, Chin. J. Phys., 2018, 56(5), 2500-2506. doi: 10.1016/j.cjph.2018.06.009

    CrossRef Google Scholar

    [38] H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik, 2018, 167, 218-227. doi: 10.1016/j.ijleo.2018.04.026

    CrossRef Google Scholar

    [39] H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh and S. Abbagari, New optical solitons of nonlinear conformable fractional Schrodinger-Hirota equation, Optik, 2018, 172, 545-553. doi: 10.1016/j.ijleo.2018.06.111

    CrossRef Google Scholar

    [40] M. Savescu, A. H. Bhrawy, E. M. Hilal, A. A. Alshaery and A. Biswas, Optical solitons in bire- fringent fibers with four-wave mixing for Kerr law nonlinearity, Rom. J. Phys., 2014, 59, 582-589.

    Google Scholar

    [41] M. Tahir and A. U. Awan, Analytical solitons with the Biswas-Milovic equation in the presence of spatio-temporal dispersion in non Kerr-law media, Eur. Phys. J. Plus, 2019, 134(9), 464. doi: 10.1140/epjp/i2019-12887-3

    CrossRef Google Scholar

    [42] M. Tahir and A. U. Awan, The study of complexitons and periodic solitary-wave solutions with fifth-order KdV equation in (2+1) dimensions, Mod. Phys. Lett. B, 2019, 33(33), 1950411. doi: 10.1142/S0217984919504116

    CrossRef Google Scholar

    [43] M. Tahir and A. U. Awan, Optical dark and singular solitons to the Biswas-Arshed equation in birefringent fibers without four-wave mixing, Optik, 2020, 207, 164421. doi: 10.1016/j.ijleo.2020.164421

    CrossRef Google Scholar

    [44] M. Tahir and A. U. Awan, Optical travelling wave solutions for the Biswas-Arshed model in Kerr and non-Kerr law media, Pramana, 2020, 94(1), 1-8. doi: 10.1007/s12043-019-1882-4

    CrossRef Google Scholar

    [45] M. Tahir and A. U. Awan, Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method, Optik, 2020, 202, 163523. doi: 10.1016/j.ijleo.2019.163523

    CrossRef Google Scholar

    [46] M. Tahir, A. U. Awan, M. S. Osman, D. Baleanu and M. M. Alqurashi, Abundant periodic wave solutions for fifth-order Sawada-Kotera equations, Results Phys., 2020, 17, 103105. doi: 10.1016/j.rinp.2020.103105

    CrossRef Google Scholar

    [47] M. Tahir, A. U. Awan and H. U. Rehman, Dark and singular optical solitons to the Biswas-Arshed model with Kerr and power law nonlinearity, Optik, 2019, 185, 777-783.

    Google Scholar

    [48] M. Tahir, A. U. Awan and H. U. Rehman, Optical solitons to Kundu-Eckhaus equation in birefringent fibers without four-wave mixing, Optik, 2019, 199, 163297.

    Google Scholar

    [49] H. Triki, A. H. Kara, A. Biswas, S. P. Moshokoa and M. Belic, Optical solitons and conservation laws with anti-cubic nonlinearity, Optik, 2016, 127(24), 12056-12062. doi: 10.1016/j.ijleo.2016.09.122

    CrossRef Google Scholar

    [50] N. Ullah, H. U. Rehman, M. A. Imran and T. Abdeljawad, Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities, Results Phys., 2020, 17, 103021.

    Google Scholar

    [51] M. Wang, Y. Zhou and Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 1996, 216, 67-75.

    Google Scholar

    [52] V. E. Zakharov and A. B. Shabat, Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media, Sov. Phys. JETP, 1972, 34(1), 62-69.

    Google Scholar

    [53] Z. Zhang, New exact solutions to be generalized nonlinear Schrödinger equation, Fizika A, 2008, 17, 125-134.

    Google Scholar

Figures(7)

Article Metrics

Article views(2985) PDF downloads(547) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint