2022 Volume 12 Issue 1
Article Contents

Sun-Hye Park. A GENERAL DECAY RESULT FOR A VON KARMAN EQUATION WITH MEMORY AND ACOUSTIC BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 17-30. doi: 10.11948/20200460
Citation: Sun-Hye Park. A GENERAL DECAY RESULT FOR A VON KARMAN EQUATION WITH MEMORY AND ACOUSTIC BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 17-30. doi: 10.11948/20200460

A GENERAL DECAY RESULT FOR A VON KARMAN EQUATION WITH MEMORY AND ACOUSTIC BOUNDARY CONDITIONS

  • Corresponding author: Email: sh-park@pusan.ac.kr(S.-H. Park)
  • Fund Project: This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2020R1I1A3066250)
  • We study a viscoelastic von Karman equation of memory type with acoustic boundary conditions. Utilizing some properties of convex functions and the perturbed energy method, we build a general decay result when the kernel function $ k $ is a very general type. This work extends and complements some previous decay results of solutions for von von Karman equations.

    MSC: 35B40, 35L70, 74D99
  • 加载中
  • [1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989.

    Google Scholar

    [2] J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 1976, 25, 895-917. doi: 10.1512/iumj.1976.25.25071

    CrossRef Google Scholar

    [3] J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 1977, 26, 199-222. doi: 10.1512/iumj.1977.26.26015

    CrossRef Google Scholar

    [4] M. M. Cavalcanti, V. N. D. Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 2001, 24, 1043-1053. doi: 10.1002/mma.250

    CrossRef Google Scholar

    [5] I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differential Equations, 2004, 198, 196-231. doi: 10.1016/j.jde.2003.08.008

    CrossRef Google Scholar

    [6] A. Favini, M. A. Horn, I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boudnary dissipation, Differential Intergral Equations, 1996, 6, 267-294; Addendum to this paper Differential Integral Equations, 1997, 10, 197-200.

    Google Scholar

    [7] C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Progress in Nonlinear Differential Equations and Their Applications, 2005, 66, 297-312.

    Google Scholar

    [8] X. Han and M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal., 2009, 70, 3090-3098. doi: 10.1016/j.na.2008.04.011

    CrossRef Google Scholar

    [9] J. H. Hassan and S. A. Messaoudi, General decay rate for a class of weakly dissipative second-order systems with memory, Math. Meth. Appl. Sci., 2019, 42, 2842-2853. doi: 10.1002/mma.5554

    CrossRef Google Scholar

    [10] J. H. Hassan, S. A. Messaoudi and M. Zahri, Existence and new general decay results for a viscoelastic Timoshenko system, Z. Anal. Anwend., 2020, 39, 185-222. doi: 10.4171/ZAA/1657

    CrossRef Google Scholar

    [11] K. Jin, J. Liang and T. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Diff. Equ., 2014, 257, 1501-1528. doi: 10.1016/j.jde.2014.05.018

    CrossRef Google Scholar

    [12] Y. Kang, J. Y. Park and D. Kim, A global nonexistence of solutions for a quasilinear viscoelastic wave equation with acoustic boundary conditions, Bound. Value Probl., 2018, 139, 1-19.

    Google Scholar

    [13] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential and Integral Equations, 1993, 6, 507-533.

    Google Scholar

    [14] W. Liu, D. Chen and S. A. Messaoudi, General decay rates for one-dimensional porous-elastic system with memory: The case of non-equal wave speeds, J. Math. Anal. Appl., 2020, 482, Article ID. 123552.

    Google Scholar

    [15] W. Liu, Z. Chen and D. Chen, New general decay results for a Moore-Gibson-Thompson equation with memory, Appl. Anal., 2020, 99, 2622-2640.

    Google Scholar

    [16] S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 2008, 341, 1457-1467. doi: 10.1016/j.jmaa.2007.11.048

    CrossRef Google Scholar

    [17] S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 2017, 66, 16-22. doi: 10.1016/j.aml.2016.11.002

    CrossRef Google Scholar

    [18] S. A. Messaoudi and N. E. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal., 2008, 68, 785-793. doi: 10.1016/j.na.2006.11.036

    CrossRef Google Scholar

    [19] J. E. Munoz Rivera and G. P. Menzala, Decay rates of solutions of a von Karman system for viscoelastic plates with memory, Quart. Appl. Math., 1999, LVII(1), 181-200.

    Google Scholar

    [20] J. E. Munoz Rivera, H. Portillo Oquendo and M. L. Santos, Asymptotic behavior to a von Karman plate with boundary memory conditions, Nonlinear Anal., 2005, 62, 1183-1205. doi: 10.1016/j.na.2005.04.025

    CrossRef Google Scholar

    [21] M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Meth. Appl. Sci., 2018, 41, 192-204. doi: 10.1002/mma.4604

    CrossRef Google Scholar

    [22] J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., 2009, 50, Article No. 013506.

    Google Scholar

    [23] J. Y. Park and S. H. Park, Uniform decay for a von Karman plate equation with a boundary memory condition, Math. Methods Appl. Sci., 2005, 28, 2225-2240. doi: 10.1002/mma.663

    CrossRef Google Scholar

    [24] J. Y. Park and S. H. Park, General decay for a nonlinear beam equation with weak dissipation, J. Math. Phys., 2010, 51, Article ID. 073508 (8pages).

    Google Scholar

    [25] S. H. Park, Arbitrary decay rates of energy for a von Karman equation of memory type, Comput. Math. Appl., 2015, 70(8), 1878-1886. doi: 10.1016/j.camwa.2015.08.005

    CrossRef Google Scholar

    [26] S. H. Park, J. Y. Park and Y. Kang, General decay for a von Karman equation of memory type with acoustic boundary conditions, Z. Angew. Math. Phys., 2012, 63, 813-823. doi: 10.1007/s00033-011-0188-2

    CrossRef Google Scholar

    [27] C. A. Raposo and M. L. Santos, General decay to a von Karman system with memory, Nonlinear Anal., 2011, 74, 937-945. doi: 10.1016/j.na.2010.09.047

    CrossRef Google Scholar

    [28] A. Vicente, Wave equation with acoustic/memeory boundary conditions, Bol. Soc. Parana. Mat., 2009, 27, 29-39.

    Google Scholar

    [29] J. Yu, Y. Shang and H. Di, Global nonexistence for a viscoelastic wave equation with acoustic boundary conditions, Acta Math. Sci., 2020, 40B, 155-159.

    Google Scholar

Article Metrics

Article views(2846) PDF downloads(547) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint