Citation: | Sun-Hye Park. A GENERAL DECAY RESULT FOR A VON KARMAN EQUATION WITH MEMORY AND ACOUSTIC BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 17-30. doi: 10.11948/20200460 |
We study a viscoelastic von Karman equation of memory type with acoustic boundary conditions. Utilizing some properties of convex functions and the perturbed energy method, we build a general decay result when the kernel function $ k $ is a very general type. This work extends and complements some previous decay results of solutions for von von Karman equations.
[1] | V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989. |
[2] | J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 1976, 25, 895-917. doi: 10.1512/iumj.1976.25.25071 |
[3] | J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 1977, 26, 199-222. doi: 10.1512/iumj.1977.26.26015 |
[4] | M. M. Cavalcanti, V. N. D. Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 2001, 24, 1043-1053. doi: 10.1002/mma.250 |
[5] | I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differential Equations, 2004, 198, 196-231. doi: 10.1016/j.jde.2003.08.008 |
[6] | A. Favini, M. A. Horn, I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boudnary dissipation, Differential Intergral Equations, 1996, 6, 267-294; Addendum to this paper Differential Integral Equations, 1997, 10, 197-200. |
[7] | C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Progress in Nonlinear Differential Equations and Their Applications, 2005, 66, 297-312. |
[8] | X. Han and M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal., 2009, 70, 3090-3098. doi: 10.1016/j.na.2008.04.011 |
[9] | J. H. Hassan and S. A. Messaoudi, General decay rate for a class of weakly dissipative second-order systems with memory, Math. Meth. Appl. Sci., 2019, 42, 2842-2853. doi: 10.1002/mma.5554 |
[10] | J. H. Hassan, S. A. Messaoudi and M. Zahri, Existence and new general decay results for a viscoelastic Timoshenko system, Z. Anal. Anwend., 2020, 39, 185-222. doi: 10.4171/ZAA/1657 |
[11] | K. Jin, J. Liang and T. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Diff. Equ., 2014, 257, 1501-1528. doi: 10.1016/j.jde.2014.05.018 |
[12] | Y. Kang, J. Y. Park and D. Kim, A global nonexistence of solutions for a quasilinear viscoelastic wave equation with acoustic boundary conditions, Bound. Value Probl., 2018, 139, 1-19. |
[13] | I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential and Integral Equations, 1993, 6, 507-533. |
[14] | W. Liu, D. Chen and S. A. Messaoudi, General decay rates for one-dimensional porous-elastic system with memory: The case of non-equal wave speeds, J. Math. Anal. Appl., 2020, 482, Article ID. 123552. |
[15] | W. Liu, Z. Chen and D. Chen, New general decay results for a Moore-Gibson-Thompson equation with memory, Appl. Anal., 2020, 99, 2622-2640. |
[16] | S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 2008, 341, 1457-1467. doi: 10.1016/j.jmaa.2007.11.048 |
[17] | S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 2017, 66, 16-22. doi: 10.1016/j.aml.2016.11.002 |
[18] | S. A. Messaoudi and N. E. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal., 2008, 68, 785-793. doi: 10.1016/j.na.2006.11.036 |
[19] | J. E. Munoz Rivera and G. P. Menzala, Decay rates of solutions of a von Karman system for viscoelastic plates with memory, Quart. Appl. Math., 1999, LVII(1), 181-200. |
[20] | J. E. Munoz Rivera, H. Portillo Oquendo and M. L. Santos, Asymptotic behavior to a von Karman plate with boundary memory conditions, Nonlinear Anal., 2005, 62, 1183-1205. doi: 10.1016/j.na.2005.04.025 |
[21] | M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Meth. Appl. Sci., 2018, 41, 192-204. doi: 10.1002/mma.4604 |
[22] | J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., 2009, 50, Article No. 013506. |
[23] | J. Y. Park and S. H. Park, Uniform decay for a von Karman plate equation with a boundary memory condition, Math. Methods Appl. Sci., 2005, 28, 2225-2240. doi: 10.1002/mma.663 |
[24] | J. Y. Park and S. H. Park, General decay for a nonlinear beam equation with weak dissipation, J. Math. Phys., 2010, 51, Article ID. 073508 (8pages). |
[25] | S. H. Park, Arbitrary decay rates of energy for a von Karman equation of memory type, Comput. Math. Appl., 2015, 70(8), 1878-1886. doi: 10.1016/j.camwa.2015.08.005 |
[26] | S. H. Park, J. Y. Park and Y. Kang, General decay for a von Karman equation of memory type with acoustic boundary conditions, Z. Angew. Math. Phys., 2012, 63, 813-823. doi: 10.1007/s00033-011-0188-2 |
[27] | C. A. Raposo and M. L. Santos, General decay to a von Karman system with memory, Nonlinear Anal., 2011, 74, 937-945. doi: 10.1016/j.na.2010.09.047 |
[28] | A. Vicente, Wave equation with acoustic/memeory boundary conditions, Bol. Soc. Parana. Mat., 2009, 27, 29-39. |
[29] | J. Yu, Y. Shang and H. Di, Global nonexistence for a viscoelastic wave equation with acoustic boundary conditions, Acta Math. Sci., 2020, 40B, 155-159. |