Citation: | Yue Wu, Wei Chen. ON STRONGLY INDEFINITE SCHRÖDINGER EQUATIONS WITH NON-PERIODIC POTENTIAL[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 1-10. doi: 10.11948/20210036 |
This paper is concerned with the non-periodic superlinear Schrödinger equation $ -\Delta u+V(x)u=f(x, u) $, $ u\in H^{1}(\mathbb{R}^{N}) $. Here, the Shrödinger operator $ -\Delta + V $ is strongly indefinite, that is, possesses a infinite dimensional negative space, which leads to more difficulty in verifying the compactness conditions. We prove the existence, as well as multiplicity provided $ f(x, t) $ is odd in $ t $, of solutions via variational methods.
[1] | S. Alama and Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J., 1992, 41(4), 983-1026. doi: 10.1512/iumj.1992.41.41052 |
[2] | T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 1993, 20(10), 1205-1216. doi: 10.1016/0362-546X(93)90151-H |
[3] | T. Bartsch and Y. Ding, On a nonlinear Schrödinger equation with periodic potential, Math. Ann., 1999, 313(1), 15-37. doi: 10.1007/s002080050248 |
[4] | T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations, 2004, 29(1-2), 25-42. |
[5] | C. Joël Batkam and F. Colin, Generalized fountain theorem and applications to strongly indefinite semilinear problems, J. Math. Anal. Appl., 2013, 405(2), 438-452. doi: 10.1016/j.jmaa.2013.04.018 |
[6] | W. Chen, Z. Fu and Y. Wu, Positive solutions for nonlinear Schrödinger –Kirchhoff equations in $\mathbb{R}^3$, Appl. Math. Lett., 2020, 104, 106274. doi: 10.1016/j.aml.2020.106274 |
[7] | Y. Ding and C. Lee, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 2006, 222(1), 137-163. doi: 10.1016/j.jde.2005.03.011 |
[8] | L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\Bbb R^ N$ autonomous at infinity, ESAIM Control Optim. Calc. Var., 2002, 7, 597-614 (electronic). doi: 10.1051/cocv:2002068 |
[9] | W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations, 1998, 3(3), 441-472. |
[10] | Q. Li, X. Du and Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in ${R}^3$, J. Math. Anal. Appl., 2019, 477(1), 174-186. doi: 10.1016/j.jmaa.2019.04.025 |
[11] | S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 2012, 45(1-2), 1-9. doi: 10.1007/s00526-011-0447-2 |
[12] | S. Liu and S. Mosconi, On the schrödinger-poisson system with indefinite potential and 3-sublinear nonlinearity, J. Differential Equations, 2020, 269(1), 689-712. doi: 10.1016/j.jde.2019.12.023 |
[13] | S. Liu and Z. Zhao, Solutions for fourth order elliptic equations on $r^n$ involving $u\delta(u^2)$ and sign-changing potentials, J. Differential Equations, 2019, 267(3), 1581-1599. doi: 10.1016/j.jde.2019.02.017 |
[14] | S. Liu and J. Zhou, Standing waves for quasilinear Schrödinger equations with indefinite potentials, J. Differential Equations, 2018, 256(9), 3970-3987. |
[15] | Z. Liu, J. Su and T. Weth, Compactness results for Schrödinger equations with asymptotically linear terms, J. Differential Equations, 2006, 231(2), 501-512. doi: 10.1016/j.jde.2006.05.007 |
[16] | P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 1992, 43(2), 270-291. doi: 10.1007/BF00946631 |
[17] | Z. Shen and S. Liu, On asymptotically linear elliptic equations in $\Bbb R^N$, J. Math. Anal. Appl., 2012, 392(1), 83-88. doi: 10.1016/j.jmaa.2012.02.059 |
[18] | B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S. ), 1982, 7(3), 447-526. doi: 10.1090/S0273-0979-1982-15041-8 |
[19] | A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 2009, 257(12), 3802-3822. doi: 10.1016/j.jfa.2009.09.013 |
[20] | C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations, 1996, 21(9-10), 1431-1449. doi: 10.1080/03605309608821233 |
[21] | M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston Inc., Boston, MA, 1996. |
[22] | M. Willem and W. Zou, On a Schrödinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 2003, 52(1), 109-132. doi: 10.1512/iumj.2003.52.2273 |
[23] | V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on ${\bf R}^n$, Comm. Pure Appl. Math., 1992, 45(10), 1217-1269. doi: 10.1002/cpa.3160451002 |
[24] | F. Zhao, L. Zhao and Y. Ding, Existence and multiplicity of solutions for a non-periodic Schrödinger equation, Nonlinear Anal., 2008, 69(11), 3671-3678. doi: 10.1016/j.na.2007.10.024 |