2021 Volume 11 Issue 6
Article Contents

Mardo Gonzales Herrera, César E. Torres Ledesma. NUMERICAL SOLUTION OF THE TIME FRACTIONAL ORDER DIFFUSION EQUATION WITH MIXED BOUNDARY CONDITIONS USING MIMETIC FINITE DIFFERENCE[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3044-3062. doi: 10.11948/20210115
Citation: Mardo Gonzales Herrera, César E. Torres Ledesma. NUMERICAL SOLUTION OF THE TIME FRACTIONAL ORDER DIFFUSION EQUATION WITH MIXED BOUNDARY CONDITIONS USING MIMETIC FINITE DIFFERENCE[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3044-3062. doi: 10.11948/20210115

NUMERICAL SOLUTION OF THE TIME FRACTIONAL ORDER DIFFUSION EQUATION WITH MIXED BOUNDARY CONDITIONS USING MIMETIC FINITE DIFFERENCE

  • This paper is devoted to the numerical treatment of time fractional diffusion equation with mixed boundary conditions. A new scheme based on the combination of the implicit finite difference method for Caputo derivative in time and the mimetic finite difference in space is derived for solving this problem. The numerical results are provided to demonstrate the effectiveness of the proposed method as compared with other finite difference methods.

    MSC: 26A33, 35A15, 35B38
  • 加载中
  • [1] A. Arrarás, L. Portero and J. Jorge, Convergence of fractional step mimetic finite difference discretizations for similinear parabolic problems, Applied Numerical Mathematics, 2010, 60, 473-485. doi: 10.1016/j.apnum.2009.10.007

    CrossRef Google Scholar

    [2] M. Benchohra, A. Cabada and D. Seba, An existence result for nonlinear fractional differential equations on Banach spaces, Bound. Value Probl., 2009, Article ID 628916, 11 pp.

    Google Scholar

    [3] R. Brociek, Implicite finite difference method for time fractional heat equation with mixed boundary conditions, Institute of Mathematics silesion University of Technology, 2014, 4.

    Google Scholar

    [4] J. Castillo and R. Grone, A Matrix Analysis approach to higher-order approximations for Divergence and gradients satisfying a global conservation law, Society for industrial and applied mathematics, 2003, 5(1), 128-142.

    Google Scholar

    [5] J. Castillo and M. Yasuda, Linear system arising for second order mimetic divergence and gradient operators, Journal of Mathematical Modeling and Algorithm, 2005, 4(1), 67082.

    Google Scholar

    [6] J. Castillo and G. Miranda, Mimetic discretization metods, 2013

    Google Scholar

    [7] A. Carpinteri and F. Mainardi, Fractal and Fractional Calculus in Continuum Mechanics, Springer, 1997.

    Google Scholar

    [8] R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi, Time fractional diffusion: a discrete random walk approach, Nonlinear Dynam., 2002, 29, 129-143. doi: 10.1023/A:1016547232119

    CrossRef Google Scholar

    [9] J. Klafter, S. Lim and R. Metzler, Fractional Dynamics, Singapore, 2012.

    Google Scholar

    [10] F. Liu, S. Shen, V. Anh and I. Turner, Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J., 2005, 46(E), 488-504.

    Google Scholar

    [11] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of Computational Physics, 2007, 25, 1533-1552.

    Google Scholar

    [12] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, In: Carpinteri, A., Mainardi, F. (eds. ) Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997.

    Google Scholar

    [13] W. Mitkowski, J. Kacprzyk and J. Baranowski, Advances in the Theory and Applications of Non-integer Order Systems, Springer Inter. Publ., Cham, 2013.

    Google Scholar

    [14] D. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 2008, 56, 1138-1145. doi: 10.1016/j.camwa.2008.02.015

    CrossRef Google Scholar

    [15] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.

    Google Scholar

    [16] S. Rabsztyn, D. Slota and R. Witula, Gamma and Beta Functions, Gliwice (in Polish), 2012, 1-2.

    Google Scholar

    [17] J. Sabatier, O. P. Agrawal and J. Tenreiro Machado, Advances in Fractional Calculus Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.

    Google Scholar

    [18] S. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 2006, 216, 264-274. doi: 10.1016/j.jcp.2005.12.006

    CrossRef Google Scholar

Figures(11)  /  Tables(1)

Article Metrics

Article views(2421) PDF downloads(483) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint