2021 Volume 11 Issue 6
Article Contents

Ashish, Jinde Cao, Fawaz Alsaadi. CHAOTIC EVOLUTION OF DIFFERENCE EQUATIONS IN MANN ORBIT[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3063-3082. doi: 10.11948/20210164
Citation: Ashish, Jinde Cao, Fawaz Alsaadi. CHAOTIC EVOLUTION OF DIFFERENCE EQUATIONS IN MANN ORBIT[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3063-3082. doi: 10.11948/20210164

CHAOTIC EVOLUTION OF DIFFERENCE EQUATIONS IN MANN ORBIT

  • Because of the tremendous characteristics of discrete chaos and sensitivity to their initial parameters, discrete one-dimensional maps are extensively used in every branch of science and engineering such as a security system, cryptography and traffic control models. In this article, it is proposed to examine the chaotic characteristics of a logistic-type difference equation using Mann orbit. Due to the presence of an added parameter α the resulting orbit provides superior chaotic characteristics from those of the existing characteristics in chaotic maps. As compared to existing chaotic maps it provides more efficient and effective chaotic characteristics like better sensitivity, suitable maximum Lyapunov exponent value and superior stability behavior. The results are carried out mathematically as well as experimentally followed by theorems, a few counterexamples and some concluding remarks. Moreover, a superior discrete traffic flow model using macroscopic approach and Greenshield's model is also described.

    MSC: 34N05, 37N35, 37D45
  • 加载中
  • [1] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer Verlag, New York Inc., 1996.

    Google Scholar

    [2] M. Andrecut, Logistic map as a random number generator, Int. J. Mod. Phys. B, 1998, 12(921).

    Google Scholar

    [3] Ashish, J. Cao and R. Chugh, Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model, Nonlinear Dyn., 2018, 94(2), 959-975. doi: 10.1007/s11071-018-4403-y

    CrossRef Google Scholar

    [4] Ashish and J. Cao, A novel fixed point feedback approach studying the dynamcial behaviour of standard logistic map, Int. J. Bifurc. Chaos, 2019, 29(1), Article ID 1950010, 16 pages.

    Google Scholar

    [5] Ashish, J. Cao and R. Chugh, Controlling chaos using superior feedback technique with applications in discrete traffic models, Int. J. Fuzzy Syst., 2019, 21(5), 1467-1479. doi: 10.1007/s40815-019-00636-8

    CrossRef Google Scholar

    [6] Ashish, J. Cao and R. Chugh, Discrete chaotification in modulated logistic system, Int. J. Bifurc. Chaos, 2021, 31(5), Article ID 2150065, 14 Pages.

    Google Scholar

    [7] Ashish, J. Cao, F. Alsaadi and A. K. Malik, Discrete Superior Hyperbolicity in Chaotic Maps, Chaos Theory and Applications, 2021, 3(1), 34-42. doi: 10.51537/chaos.936679

    CrossRef Google Scholar

    [8] M. Ausloos and M. Dirickx, The Logistic Map and the Route to Chaos: from the Beginnings to Modern Applications, Springer Verlag, New York Inc., 2006.

    Google Scholar

    [9] M. S. Baptista, Cryptography with chaos, Physics Letters A, 1998, 240, 50-54. doi: 10.1016/S0375-9601(98)00086-3

    CrossRef Google Scholar

    [10] A. R. Chowdhary and M. Debnath, Periodicity and Chaos in Modulated Logistic map, Int. J. Theor. Phy., 1990, 29(7), 779-788. doi: 10.1007/BF00673913

    CrossRef Google Scholar

    [11] R. M. Crownover, Introduction to Fractals and Chaos, Jones and Barlett Publishers, Burlington, 1995.

    Google Scholar

    [12] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd Edition, Addison-Wesley, 1948.

    Google Scholar

    [13] R. L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison-Wesley, 1992.

    Google Scholar

    [14] P. Diamond, Chaotic behaviour of systems of difference equations, Int. J. Systems Sci., 1976, 7(8), 953-956. doi: 10.1080/00207727608941979

    CrossRef Google Scholar

    [15] L. P. L. de Oliveira and M. Sobottka, Cryptography with chaotic mixing, Chaos Solitons Fractals, 2008, 35(3), 466-471. doi: 10.1016/j.chaos.2006.05.049

    CrossRef Google Scholar

    [16] S. Effah-Poku, W. Obeng-Denteh and I. K. Dontwi, A Study of Chaos in Dynamical Systems, J. Math., 2008, Article ID 1808953, 5 pages.

    Google Scholar

    [17] M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 1978, 19(1), 25-52. doi: 10.1007/BF01020332

    CrossRef Google Scholar

    [18] R. A. Holmgren, A First Course in Discrete Dynamical Systems, Springer Verlag, New York Inc., 1994.

    Google Scholar

    [19] Khamosh, V. Kumar and Ashish, A Noval Feedback Control System to Study the Stability in Stationary States, J. Math. Comput. Sci., 2020, 10(5), 2094-2109.

    Google Scholar

    [20] V. Kumar, Khamosh and Ashish, An Empirical Approach to Study the Stability of Generalized Logistic Map in Superior Orbit, Adv. Math., Sci. J., 2020, 9(10), 8365-8374.

    Google Scholar

    [21] K. Li and Z. Gao, Nonlinear dynamics analysis of traffic time series, Mod. Phys. Lett. B, 2004, 18, 1395-1402. doi: 10.1142/S0217984904007943

    CrossRef Google Scholar

    [22] T. Li and J. A. Yorke, Period Three Implies Chaos, American Mathematical Monthly, 1975, 82(10), 985-992. doi: 10.1080/00029890.1975.11994008

    CrossRef Google Scholar

    [23] S. C. Lo and H. J. Cho, Chaos and control of discrete dynamic traffic model, J. Franklin Inst., 2005, 342, 839-851. doi: 10.1016/j.jfranklin.2005.06.002

    CrossRef Google Scholar

    [24] E. N. Lorenz, Deterministic nonperiodic flows, J. Atmos. Sci., 1963, 20, 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    CrossRef Google Scholar

    [25] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 1953, 4, 506-510. doi: 10.1090/S0002-9939-1953-0054846-3

    CrossRef Google Scholar

    [26] M. Martelli, Chaos: An Introduction to Discrete Dynamical Systems and Chaos, Wiley-Interscience Publication, New York Inc., 1999.

    Google Scholar

    [27] R. May, Simple mathematical models with very complicated dynamics, Nature, 1976, 261, 459-475. doi: 10.1038/261459a0

    CrossRef Google Scholar

    [28] H. Poincare, Les Methods Nouvells de la Mecanique Leleste, Gauthier Villars, Paris, 1899.

    Google Scholar

    [29] A. G. Radwan, On some generalized discrete logistic maps, J. Adv. Res., 2013, 4, 163-171. doi: 10.1016/j.jare.2012.05.003

    CrossRef Google Scholar

    [30] W. S. Sayed, A. G. Radwan and H. A. H. Fahmy, Design of positive, negative and alternating sign generalized logistic maps, Discrete Dyn. Nat. Soc., 2015, Article ID 586783, 23 pages.

    Google Scholar

    [31] P. Shang, X. Li and S. Kame, Chaotic analysis of traffic time series, Chaos Solitons Fractals, 2005, 25, 121-128. doi: 10.1016/j.chaos.2004.09.104

    CrossRef Google Scholar

    [32] A. N. Sharkovsky, Y. L. Maistrenko and E. Y. Romanenko, Difference Equations and Their Applications, Kluwer Academic Publisher, 1993.

    Google Scholar

    [33] N. Singh and A. Sinha, Chaos-based secure communication system using logistic map, Opt. Lasers Eng., 2010, 48, 398-404. doi: 10.1016/j.optlaseng.2009.10.001

    CrossRef Google Scholar

    [34] N. Smaoui and A. Kanso, Cryptography with chaos and shadowing, Chaos Solitons Fractals, 2009, 42, 2312-2321. doi: 10.1016/j.chaos.2009.03.128

    CrossRef Google Scholar

    [35] S. H. Strogatz, Nonlinear Dynamics and Chaos, Persus Books Publishing, New York, 1994.

    Google Scholar

    [36] M. Xu and Z. Gao, Nonlinear analysis of road traffic flows in discrete dynamical system, J. Comput. Nonlin. Dyn., 2008, 3(2), Article ID 021206, 6 pages.

    Google Scholar

    [37] G. Wu and D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 2014, 75, 283-286. doi: 10.1007/s11071-013-1065-7

    CrossRef Google Scholar

    [38] G. Wu and D. Baleanu, Discrete chaos in fractional delayed logistic map, Nonlinear Dyn., 2015, 80, 1697-1703. doi: 10.1007/s11071-014-1250-3

    CrossRef Google Scholar

Figures(6)  /  Tables(1)

Article Metrics

Article views(2950) PDF downloads(347) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint