2022 Volume 12 Issue 2
Article Contents

M. E. Elbrolosy, A. A. Elmandouh. CONSTRUCTION OF NEW TRAVELING WAVE SOLUTIONS FOR THE (2+1) DIMENSIONAL EXTENDED KADOMTSEV-PETVIASHVILI EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 533-550. doi: 10.11948/20210195
Citation: M. E. Elbrolosy, A. A. Elmandouh. CONSTRUCTION OF NEW TRAVELING WAVE SOLUTIONS FOR THE (2+1) DIMENSIONAL EXTENDED KADOMTSEV-PETVIASHVILI EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 533-550. doi: 10.11948/20210195

CONSTRUCTION OF NEW TRAVELING WAVE SOLUTIONS FOR THE (2+1) DIMENSIONAL EXTENDED KADOMTSEV-PETVIASHVILI EQUATION

  • Corresponding author: Email: melborolosy@kfu.edu.sa(M. E. Elbrolosy) 
  • Fund Project: The authors acknowledge the Deanship of Scientific Research at King Faisal University for the financial support under Nasher Track (No. 206139)
  • This work is interested in constructing traveling wave solutions for the (2+1)-dimensional extended Kadomtsev–Petviashvili equation that is utilized as a model for the surface waves and internal waves in straits or channels. Based on the bifurcation analysis of the traveling wave system, we use the conserved quantity to construct some new bounded traveling wave solutions such as periodic and solitary solutions in addition to some unbounded novel wave solutions. Some of the new solutions and their corresponding orbits are clarified graphically. Moreover, we examine numerically the dynamical behaviour for the perturbed (2+1)-dimensional extended Kadomtsev–Petviashvili equation by adding a perturbed periodic term.

    MSC: 35Q53, 35C07, 35Q92
  • 加载中
  • [1] I. Ahmed, A. R. Seadawy and D. Lu, Mixed lump-solitons, periodic lump and breather soliton solutions for (2+1)-dimensional extended Kadomtsev-Petviashvili dynamical equation, International Journal of Modern Physics B, 2019, 33(05), 1950019. DOI: 10.1142/S021797921950019X.

    CrossRef Google Scholar

    [2] P. F. Byrd and M. D. Fridman, Handbook of elliptic integrals for engineers and scientists, Berlin: Springer, 1971.

    Google Scholar

    [3] S. Beji, Kadomtsev-Petviashvili type equation for entire range of relative water depths, Coastal engineering journal, 2018, 60(1), 60-68. DOI: 10.1080/21664250.2018.1436241.

    CrossRef Google Scholar

    [4] A. Biswas, 1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(6), 2524-2527. DOI: 10.1016/j.cnsns.2008.09.023.

    CrossRef Google Scholar

    [5] A. H. Bhrawy, M. A. Abdelkawy, S. Kumar and A. Biswas, Solitons and other solutions to Kadomtsev-Petviashvili equation of B-type, Romanian Journal of Physics, 2013, 58(7), 729-748.

    Google Scholar

    [6] L. Cheng and Y. Zhang, Multiple wave solutions and auto- Bäcklund transformation for the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, Computers and Mathematics with Applications, 2015, 70(5), 765-775. DOI: 10.1016/j.camwa.2015.05.028.

    CrossRef Google Scholar

    [7] P. Dubard and V. B. Matveev, Multi-rogue waves solutions: from the NLS to the KP-I equation, Nonlinearity, 2013, 26(12), R93. DOI: 10.1088/0951-7715/26/12/R93.

    CrossRef Google Scholar

    [8] M. Darvishi, M. Najafi, S. Arbabi and L. Kavitha, Exact propagating multi-anti-kink soliton solutions of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation, Nonlinear Dynamics, 2016, 83(3), 1453-1462. DOI: 10.1007/s11071-015-2417-2.

    CrossRef Google Scholar

    [9] G. Ebadi, N. Y. Fard, H. Triki and A. Biswas, Exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation, Nonlinear Analysis: Modelling and Control, 2012, 17(3), 280-296. doi: 10.15388/NA.17.3.14056

    CrossRef Google Scholar

    [10] G. Ebadi, A. H. Kara, M. D. Petkovic, A. Yildirim and A. Biswas, Solitons and conserved quantities of the Ito equation, Proceedings of the Romanian Academy: Series A, 2012, 13, 215-224.

    Google Scholar

    [11] G. Ebadi, N. Y. Fard, A. H. Bhrawy, S. Kumar, H. Triki, A. Yildirim and A. Biswas, Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity, Romanian Reports in Physics, 2013, 65, 27-62.

    Google Scholar

    [12] K. El-Rashidy, A. R. Seadawy, S. Althobaiti and M. M. Makhlouf, Multiwave, Kinky breathers and multi-peak soliton solutions for the nonlinear Hirota dynamical system, Results in Physics, 2020, 19, 103678. DOI: 10.1016/j.rinp.2020.103678.

    CrossRef Google Scholar

    [13] K. El-Rashidy, New traveling wave solutions for the higher Sharma-Tasso-Olver equation by using extension exponential rational function method, Results in Physics, 2020, 17, 103066. DOI: 10.1016/j.rinp.2020.103066.

    CrossRef Google Scholar

    [14] K. El-Rashidy and A. R. Seadawy, Kinky breathers, multi-peak and multi-wave soliton solutions for the nonlinear propagation of Kundu–Eckhaus dynamical model, International Journal of Modern Physics B, 2020, 34(32), 2050317. DOI: 10.1142/S0217979220503178.

    CrossRef Google Scholar

    [15] K. El-Rashidy, A. R. Seadawy, S. Althobaiti and M. M. Makhlouf, Investigation of interactional phenomena and multi wave solutions of the quantum hydrodynamic Zakharov–Kuznetsov model, Open Physics, 2021, 19(1), 91-99. DOI: 10.1515/phys-2021-0009.

    CrossRef Google Scholar

    [16] A. A. Elmandouh and A. G. Ibrahim, Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation, Journal of Taibah University for Science, 2020, 14 (1), 139-147. DOI: 10.1080/16583655.2019.1709271.

    CrossRef Google Scholar

    [17] A. A. Elmandouh, Bifurcation and new traveling wave solutions for the 2D Ginzburg–Landau equation, European Phyical Journal Plus, 2020, 135, 648. DOI: 10.1140/epjp/s13360-020-00675-3.

    CrossRef Google Scholar

    [18] M. E. Elbrolosy and A. A. Elmandouh, Bifurcation and new traveling wave solutions for (2+1)-dimensional nonlinear Nizhnik–Novikov–Veselov dynamical equation, European Phyical Journal Plus, 2020, 135, 533. DOI: 10.1140/epjp/s13360-020-00546-x.

    CrossRef Google Scholar

    [19] M. E. Elbrolosy and A. A. Elmandouh, Dynamical behaviour of nondissipative double dispersive microstrain wave in the microstructured solids, The European Physical Journal Plus, 2021, 136(9), 1-20. DOI: 10.1140/epjp/s13360-021-01957-0.

    CrossRef Google Scholar

    [20] M. E. Elbrolosy, Qualitative analysis and new soliton solutions for the coupled nonlinear Schrödinger type equations, Physica Scripta, 2021. DOI: 10.1088/1402-4896/ac445c.

    CrossRef Google Scholar

    [21] A. A. Elmandouh, Integrability, qualitative analysis and the dynamics of wave solutions for Biswas–Milovic equation, The European Physical Journal Plus, 2021, 136(6), 1-17. DOI: 10.1140/epjp/s13360-021-01626-2.

    CrossRef Google Scholar

    [22] J. Guo, J. He, M. Li and D. Mihalache, Exact solutions with elastic interactions for the (2+1)-dimensional extended Kadomtsev-Petviashvili Equation, Nonlinear Dynamics, 2020, 101, 2413-2422. DOI: 10.1007/s11071-020-05881-3.

    CrossRef Google Scholar

    [23] X. Guan and W. Liu, Multiple-soliton and lump-kink solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Results in Physics, 2020, 17, 103149. DOI: 10.1016/j.rinp.2020.103149.

    CrossRef Google Scholar

    [24] A. J. M. Jawad, Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation, Discrete and continuous dynamical systems series S, 2015, 8(6), 1155-1164. DOI: 10.3934/dcdss.2015.8.1155.

    CrossRef Google Scholar

    [25] J. Liu and Z. Zeng, Auto- Bäcklund transformation and new exact solutions of the (3+1)-imensional KP equation with variable coefficients, Journal of Theoretical and Applied Physics, 2013, 7, 49. DOI: 10.1186/2251-7235-7-49.

    CrossRef Google Scholar

    [26] J. Li, Y. Zhang and J. Liang, Bifurcation and exact traveling wave solutions for a new integrable non-local equation, Journal of Applied Analysis and Computation, 2021, 11(3), 1588-1599. DOI: 10.11948/20200319.

    CrossRef Google Scholar

    [27] Q. Meng and B. He, Bifurcation analysis and exact traveling wave solutions for a generic two-dimensional sine-Gordon equation in nonlinear optics, Journal of Applied Analysis and Computation, 2020, 10(4), 1443-1463. DOI: 10.11948/20190227.

    CrossRef Google Scholar

    [28] W. Mao, Bifurcation and exact traveling wave solutions of MN-Wang equation, Journal of Applied Analysis and Computation, 2020, 10(1), 210-222. DOI: 10.11948/20190113.

    CrossRef Google Scholar

    [29] W. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Physics Letters A, 2015, 379(36), 1975-1978. DOI: 10.1016/j.physleta.2015.06.061.

    CrossRef Google Scholar

    [30] S. Manukure, Y. Zhou and W. Ma, Lump solutions to a (2+1)-dimensional extended KP equation, Computers and Mathematics with Applications, 2018, 75(7), 2414-2419. DOI: 10.1016/j.camwa.2017.12.030.

    CrossRef Google Scholar

    [31] M. A. Nuwairan and A. A. Elmandouh, Qualitative analysis and wave propagation of the nonlinear model for low-pass electrical transmission lines, Physica Scripta, 2021, 96(9), 095214. DOI: 10.1088/1402-4896/ac0989.

    CrossRef Google Scholar

    [32] J. Song and J. Li, Bifurcations and exact travelling wave solutions for a shallow water wave model with a non-stationary bottom surface, Journal of Applied Analysis Computation, 2020, 10(1), 350-360. DOI: 10.11948/20190254.

    CrossRef Google Scholar

    [33] A. R. Seadawy and K. El-Rashidy, Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma, Results in Physics 8, 2018, 1216-1222. DOI: 10.1016/j.rinp.2018.01.053.

    CrossRef Google Scholar

    [34] Y. Sun, W. Ma, J. Yu and C. M. Khalique, Dynamics of lump solitary wave of Kadomtsev-Petviashvili-Boussinesq-like equation, Computers and Mathematics with Applications, 2019, 78(3), 840-847. DOI: 10.1016/j.camwa.2019.03.001.

    CrossRef Google Scholar

    [35] A. R. Seadawy, M. Iqbal and D. Lu, Propagation of long-wave with dissipation and dispersion in nonlinear media via generalized Kadomtsive-Petviashvili modified equal width Burgers equation, Indian Journal of Physics, 2020, 94(5), 675-687. DOI: 10.1007/s12648-019-01500-z.

    CrossRef Google Scholar

    [36] H. Triki, S. Crutcher, A. Yildirim, T. Hayat, O. M. Aldossary and A. Biswas, Bright and dark solitons of the modified complex Ginzburg Landau equation with parabolic and dual-power law nonlinearity, Romanian Reports in Physics, 2012, 64, 367-380.

    Google Scholar

    [37] H. Triki, A. Yildirim, T. Hayat, O. M. Aldossary and A. Biswas, Topological and non-topological soliton solutions of the bretherton equation, Romanian Reports in Physics, 2012, 64, 672-684.

    Google Scholar

    [38] Y. Wang and J. Deng, Explicit solutions and conservation laws of the logarithmic-KP equation, Advances in Difference Equations, Article number 229, 2016, DOI: 10.1186/s13662-016-0948-6.

    Google Scholar

    [39] H. Wang, Solitons of the Kadomtsev-Petviashvili equation based on lattice Boltzmann model, Advances in Space Research, 2017, 59(1), 293-301. DOI: 10.1016/j.asr.2016.08.029.

    CrossRef Google Scholar

    [40] A. M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Applied Mathematics and Computation, 2007, 190(1), 633-640. DOI: 10.1016/j.amc.2007.01.056.

    CrossRef Google Scholar

    [41] A. M. Wazwaz, Two integrable extensions of the Kadomtsev-Petviashvili equation, Central European Journal of Physics, 2011, 91, 49-56. DOI: 10.2478/s11534-010-0056-2.

    CrossRef Google Scholar

    [42] A. M. Wazwa, Extended KP equations and extended system of KP equations: multiple-soliton solutions, Canadian Journal of Physics, 2011, 89(7), 739-743. DOI: 10.1139/p11-065.

    CrossRef Google Scholar

    [43] A. M. Wazwaz, Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations, Physica Scripta, 2014, 89(9), 095206. DOI: 10.1088/0031-8949/89/9/095206.

    CrossRef Google Scholar

    [44] S. Xie, L. Wang and Y. Zhang, Explicit and implicit solutions of a generalized Camassa-Holm Kadomtsev-Petviashvili equation, Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3), 1130-1141. DOI: 10.1016/j.cnsns.2011.07.003.

    CrossRef Google Scholar

    [45] Z. Xu, H. Chen, M. Jiang, M. Dai and W. Chen, Resonance and deflection of multi-soliton to the (2+1)-dimensional Kadomtsev-Petviashvili equation, Nonlinear Dynamics, 2014, 78, 461-466, DOI: 10.1007/s11071-014-1452-8.

    CrossRef Google Scholar

    [46] J. Yu and Y. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dynamics, 2017, 87, 2755-2763. DOI: 10.1007/s11071-016-3225-z.

    CrossRef Google Scholar

    [47] J. Zhuang and Y. Zhou, Bifurcation and exact traveling wave solutions of the equivalent complex short-plus equations, Journal of Applied Analysis Computation, 2020, 10(2), 795-815. DOI: 10.11948/20190408.

    CrossRef Google Scholar

Figures(10)  /  Tables(1)

Article Metrics

Article views(2673) PDF downloads(776) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint