2022 Volume 12 Issue 2
Article Contents

Pingrun Li, Songwei Bai, Meng Sun, Na Zhang. SOLVING CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH REFLECTION AND TRANSLATION SHIFTS UTILIZING RIEMANN-HILBERT APPROACH[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 551-567. doi: 10.11948/20210214
Citation: Pingrun Li, Songwei Bai, Meng Sun, Na Zhang. SOLVING CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH REFLECTION AND TRANSLATION SHIFTS UTILIZING RIEMANN-HILBERT APPROACH[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 551-567. doi: 10.11948/20210214

SOLVING CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH REFLECTION AND TRANSLATION SHIFTS UTILIZING RIEMANN-HILBERT APPROACH

  • In this paper, method of solution for some kinds of convolution singular integral equations with reflection will be discussed in class {0}. By means of the theory of Fourier analysis and the theory of boundary value problems of analytic functions, such equations can be transformed into Riemann boundary value problems (i.e., Riemann-Hilbert problems) with nodes and reflection, or a system of linear algebraic equations. In spite of the classical method for solution, we are to give a new method, by which analytic solutions and conditions of Noether solvability are obtained respectively. At the end of this paper, we propose two kinds of convolution singular integral equations with reflections and a finite set of translation shifts.

    MSC: 45E10, 45E05, 30E25
  • 加载中
  • [1] I. Belmoulouda and A. Memoub, On the solvability of a class of nonlinear singular parabolic equation with integral boundary condition, Appl. Math. Comput., 2020, 373, 124999.

    Google Scholar

    [2] G. Capobianco, D. Conte and I. Del Prete, Fast Runge-Kutta methods for nonlinear convolution systems of Volterra integral equations, Bit Numer. Math., 2007, 47(2), 259-275. doi: 10.1007/s10543-007-0120-5

    CrossRef Google Scholar

    [3] L. P. Castro and E. M. Rojas, Explicit solutions of Cauchy singular integral equations with weighted Carleman shift, J. Math. Anal. Appl., 2010, 371(1), 128-134. doi: 10.1016/j.jmaa.2010.04.050

    CrossRef Google Scholar

    [4] L. H. Chuan, N. V. Mau and N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117-137. doi: 10.1080/17476930701619782

    CrossRef Google Scholar

    [5] L. H. Chuan and N. M. Tuan, On the singular integral equations with Carleman shift in the case of the vanishing coefficient, Acta Mathematica Vietnamica, 2008, 28(5), 13-27.

    Google Scholar

    [6] H. Du and J. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308-314. doi: 10.1016/j.jmaa.2008.07.037

    CrossRef Google Scholar

    [7] C. Dajana and I. Del Prete, Fast collocation methods for Volterra integral equations of convolution type, J. Comput. Appl. Math., 2006, 196(2), 652-664. doi: 10.1016/j.cam.2005.10.018

    CrossRef Google Scholar

    [8] F. D. Gakhov and U. I. Chersky, Integral operators of convolution type with discontinuous coefficients, Math, Nachr., 1977, 79, 75-78. doi: 10.1002/mana.19770790108

    CrossRef Google Scholar

    [9] Y. Gong, L. T. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435-444. doi: 10.1016/j.jmaa.2008.12.021

    CrossRef Google Scholar

    [10] K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. doi: 10.1016/j.cam.2019.112531

    CrossRef Google Scholar

    [11] A. Y. Karlovich, Y. I. Karlovich and A. B. Lebre, Necessary Fredholm conditions for weighted singular integral operators with shifts and slowly oscillating data, J. Integral Equations Appl., 2017, 29(3), 365-399.

    Google Scholar

    [12] A. Y. Karlovich, Y. I. Karlovich and A. B. Lebre, On a weighted singular integral operator with shifts and slowly oscillating data, Complex Anal. Oper. Theory, 2016, 10(6), 1101-1131. doi: 10.1007/s11785-015-0452-0

    CrossRef Google Scholar

    [13] K. Kant and G. Nelakanti, Error analysis of Jacobi–Galerkin method for solving weakly singular Volterra–Hammerstein integral equations, Int. J. Comput. Math., 2020, 97(12), 2395-2420. doi: 10.1080/00207160.2020.1714601

    CrossRef Google Scholar

    [14] K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. doi: 10.1016/j.cam.2019.112531

    CrossRef Google Scholar

    [15] K. Kant and G. Nelakanti, Galerkin and multi-Galerkin methods for weakly singular Volterra–Hammerstein integral equations and their convergence analysis, Comput. Appl. Math., 2020, 39(2), DOI: 10.1007/s40314-020-1100-5.

    CrossRef Google Scholar

    [16] G. S. Litvinchuk, Singular integral equations and boundary value problems with shift, Moscow: Nauka Press, 1978, 202-207.

    Google Scholar

    [17] P. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643

    CrossRef Google Scholar

    [18] P. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 40.

    Google Scholar

    [19] J. Lu, On method of solution for some classes of singular integral equations with convolution, Chin. Ann. of Math., 1987, 8(1), 97-108.

    Google Scholar

    [20] J. Lu, Boundary Value Problems for Analytic Functions, Singapore, World Sci., 2004.

    Google Scholar

    [21] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, London: Kluwer Academic Publisers, 2004.

    Google Scholar

    [22] P. Li, Solvability of some classes of singular integral equations of convolution type via Riemann-Hilbert problem, J. Inequal. Appl., 2019, 22. doi: 10.1186/s13660-019-1975-0

    CrossRef Google Scholar

    [23] P. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631-2645. doi: 10.1002/mma.5538

    CrossRef Google Scholar

    [24] P. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67-75. doi: 10.1080/17476933.2015.1057712

    CrossRef Google Scholar

    [25] P. Li and G. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185-194.

    Google Scholar

    [26] P. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314-324. doi: 10.1016/j.cam.2016.07.027

    CrossRef Google Scholar

    [27] P. Li, Some classes of singular integral equations of convolution type in the class of exponentially increasing functions, J. Inequal. Appl., 2017, 307.

    Google Scholar

    [28] P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455-5471. doi: 10.1016/j.jde.2018.07.056

    CrossRef Google Scholar

    [29] P. Li, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344-345, 116-127.

    Google Scholar

    [30] P. Li, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput., 2019, 9(3), 1071-1082.

    Google Scholar

    [31] P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601.

    Google Scholar

    [32] P. Li, Linear BVPs and SIEs for generalized regular functions in Clifford analysis, J. Funct. Spaces, 2018, 10, Article ID: 6967149.

    Google Scholar

    [33] P. Li, The solvability and explicit solutions of singular integral-differential equations of non-normal type via Riemann-Hilbert problem, J. Comput. Appl. Math., 2020, 374(2), 112759.

    Google Scholar

    [34] P. Li, Existence of solutions for dual singular integral equations with convolution kernels in case of non-normal type, J. Appl. Anal. Comput., 2020, 10(6), 2756-2766.

    Google Scholar

    [35] P. Li, The solvability of a kind of generalized Riemann-Hilbert problems on function spaces $H_\ast$, J. Inequal. Appl., 2020, 234.

    $H_\ast$" target="_blank">Google Scholar

    [36] P. Li, N. Zhang, M. Wang and Y. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., 2021, DOI: 10.1080/17476933.2021.2009817.

    CrossRef Google Scholar

    [37] P. Li, Singular integral equations of convolution type with cosecant kernels and periodic coefficients, Math. Probl. Eng., 2017, Article ID: 6148393.

    Google Scholar

    [38] P. Li, Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem, Adv. Difference Equ., 2017, 360.

    Google Scholar

    [39] N. I. Musknelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.

    Google Scholar

    [40] E. Najafi, Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations, J. Comput. Appl. Math., 2020, 368, 112538. doi: 10.1016/j.cam.2019.112538

    CrossRef Google Scholar

    [41] G. Ren and X. Wang, Caratheodory theorems for slice regular functions, Complex Anal. Oper. Theory., 2015, 9(5), 1229-1244. doi: 10.1007/s11785-014-0432-9

    CrossRef Google Scholar

    [42] G. Ren, U. Kaehler, J. Shi and C. Liu, Hardy-Littlewood inequalities for fractional derivatives of invariant harmonic functions, Complex Anal. Oper. Theory., 2012, 6(2), 373-396. doi: 10.1007/s11785-010-0123-0

    CrossRef Google Scholar

    [43] Q. Wen and Q. Du, An approximate numerical method for solving Cauchy singular integral equations composed of multiple implicit parameter functions with unknown integral limits in contact mechanics, J. Math. Anal. Appl., 2020, 482, 123530. doi: 10.1016/j.jmaa.2019.123530

    CrossRef Google Scholar

Article Metrics

Article views(2805) PDF downloads(473) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint