Citation: | Pingrun Li, Songwei Bai, Meng Sun, Na Zhang. SOLVING CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH REFLECTION AND TRANSLATION SHIFTS UTILIZING RIEMANN-HILBERT APPROACH[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 551-567. doi: 10.11948/20210214 |
In this paper, method of solution for some kinds of convolution singular integral equations with reflection will be discussed in class {0}. By means of the theory of Fourier analysis and the theory of boundary value problems of analytic functions, such equations can be transformed into Riemann boundary value problems (i.e., Riemann-Hilbert problems) with nodes and reflection, or a system of linear algebraic equations. In spite of the classical method for solution, we are to give a new method, by which analytic solutions and conditions of Noether solvability are obtained respectively. At the end of this paper, we propose two kinds of convolution singular integral equations with reflections and a finite set of translation shifts.
[1] | I. Belmoulouda and A. Memoub, On the solvability of a class of nonlinear singular parabolic equation with integral boundary condition, Appl. Math. Comput., 2020, 373, 124999. |
[2] | G. Capobianco, D. Conte and I. Del Prete, Fast Runge-Kutta methods for nonlinear convolution systems of Volterra integral equations, Bit Numer. Math., 2007, 47(2), 259-275. doi: 10.1007/s10543-007-0120-5 |
[3] | L. P. Castro and E. M. Rojas, Explicit solutions of Cauchy singular integral equations with weighted Carleman shift, J. Math. Anal. Appl., 2010, 371(1), 128-134. doi: 10.1016/j.jmaa.2010.04.050 |
[4] | L. H. Chuan, N. V. Mau and N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117-137. doi: 10.1080/17476930701619782 |
[5] | L. H. Chuan and N. M. Tuan, On the singular integral equations with Carleman shift in the case of the vanishing coefficient, Acta Mathematica Vietnamica, 2008, 28(5), 13-27. |
[6] | H. Du and J. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308-314. doi: 10.1016/j.jmaa.2008.07.037 |
[7] | C. Dajana and I. Del Prete, Fast collocation methods for Volterra integral equations of convolution type, J. Comput. Appl. Math., 2006, 196(2), 652-664. doi: 10.1016/j.cam.2005.10.018 |
[8] | F. D. Gakhov and U. I. Chersky, Integral operators of convolution type with discontinuous coefficients, Math, Nachr., 1977, 79, 75-78. doi: 10.1002/mana.19770790108 |
[9] | Y. Gong, L. T. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435-444. doi: 10.1016/j.jmaa.2008.12.021 |
[10] | K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. doi: 10.1016/j.cam.2019.112531 |
[11] | A. Y. Karlovich, Y. I. Karlovich and A. B. Lebre, Necessary Fredholm conditions for weighted singular integral operators with shifts and slowly oscillating data, J. Integral Equations Appl., 2017, 29(3), 365-399. |
[12] | A. Y. Karlovich, Y. I. Karlovich and A. B. Lebre, On a weighted singular integral operator with shifts and slowly oscillating data, Complex Anal. Oper. Theory, 2016, 10(6), 1101-1131. doi: 10.1007/s11785-015-0452-0 |
[13] | K. Kant and G. Nelakanti, Error analysis of Jacobi–Galerkin method for solving weakly singular Volterra–Hammerstein integral equations, Int. J. Comput. Math., 2020, 97(12), 2395-2420. doi: 10.1080/00207160.2020.1714601 |
[14] | K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. doi: 10.1016/j.cam.2019.112531 |
[15] | K. Kant and G. Nelakanti, Galerkin and multi-Galerkin methods for weakly singular Volterra–Hammerstein integral equations and their convergence analysis, Comput. Appl. Math., 2020, 39(2), DOI: 10.1007/s40314-020-1100-5. |
[16] | G. S. Litvinchuk, Singular integral equations and boundary value problems with shift, Moscow: Nauka Press, 1978, 202-207. |
[17] | P. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643 |
[18] | P. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 40. |
[19] | J. Lu, On method of solution for some classes of singular integral equations with convolution, Chin. Ann. of Math., 1987, 8(1), 97-108. |
[20] | J. Lu, Boundary Value Problems for Analytic Functions, Singapore, World Sci., 2004. |
[21] | G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, London: Kluwer Academic Publisers, 2004. |
[22] | P. Li, Solvability of some classes of singular integral equations of convolution type via Riemann-Hilbert problem, J. Inequal. Appl., 2019, 22. doi: 10.1186/s13660-019-1975-0 |
[23] | P. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631-2645. doi: 10.1002/mma.5538 |
[24] | P. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67-75. doi: 10.1080/17476933.2015.1057712 |
[25] | P. Li and G. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185-194. |
[26] | P. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314-324. doi: 10.1016/j.cam.2016.07.027 |
[27] | P. Li, Some classes of singular integral equations of convolution type in the class of exponentially increasing functions, J. Inequal. Appl., 2017, 307. |
[28] | P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455-5471. doi: 10.1016/j.jde.2018.07.056 |
[29] | P. Li, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344-345, 116-127. |
[30] | P. Li, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput., 2019, 9(3), 1071-1082. |
[31] | P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601. |
[32] | P. Li, Linear BVPs and SIEs for generalized regular functions in Clifford analysis, J. Funct. Spaces, 2018, 10, Article ID: 6967149. |
[33] | P. Li, The solvability and explicit solutions of singular integral-differential equations of non-normal type via Riemann-Hilbert problem, J. Comput. Appl. Math., 2020, 374(2), 112759. |
[34] | P. Li, Existence of solutions for dual singular integral equations with convolution kernels in case of non-normal type, J. Appl. Anal. Comput., 2020, 10(6), 2756-2766. |
[35] | P. Li, The solvability of a kind of generalized Riemann-Hilbert problems on function spaces $H_\ast$, J. Inequal. Appl., 2020, 234. |
[36] | P. Li, N. Zhang, M. Wang and Y. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., 2021, DOI: 10.1080/17476933.2021.2009817. |
[37] | P. Li, Singular integral equations of convolution type with cosecant kernels and periodic coefficients, Math. Probl. Eng., 2017, Article ID: 6148393. |
[38] | P. Li, Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem, Adv. Difference Equ., 2017, 360. |
[39] | N. I. Musknelishvilli, Singular Integral Equations, NauKa, Moscow, 2002. |
[40] | E. Najafi, Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations, J. Comput. Appl. Math., 2020, 368, 112538. doi: 10.1016/j.cam.2019.112538 |
[41] | G. Ren and X. Wang, Caratheodory theorems for slice regular functions, Complex Anal. Oper. Theory., 2015, 9(5), 1229-1244. doi: 10.1007/s11785-014-0432-9 |
[42] | G. Ren, U. Kaehler, J. Shi and C. Liu, Hardy-Littlewood inequalities for fractional derivatives of invariant harmonic functions, Complex Anal. Oper. Theory., 2012, 6(2), 373-396. doi: 10.1007/s11785-010-0123-0 |
[43] | Q. Wen and Q. Du, An approximate numerical method for solving Cauchy singular integral equations composed of multiple implicit parameter functions with unknown integral limits in contact mechanics, J. Math. Anal. Appl., 2020, 482, 123530. doi: 10.1016/j.jmaa.2019.123530 |