2022 Volume 12 Issue 2
Article Contents

Guoqiao You, Changfeng Xue. FAST IDENTIFICATION OF THE HYPERBOLIC LAGRANGIAN COHERENT STRUCTURES IN TWO-DIMENSIONAL FLOWS BASED ON THE EULERIAN-TYPE ALGORITHMS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 568-590. doi: 10.11948/20210229
Citation: Guoqiao You, Changfeng Xue. FAST IDENTIFICATION OF THE HYPERBOLIC LAGRANGIAN COHERENT STRUCTURES IN TWO-DIMENSIONAL FLOWS BASED ON THE EULERIAN-TYPE ALGORITHMS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 568-590. doi: 10.11948/20210229

FAST IDENTIFICATION OF THE HYPERBOLIC LAGRANGIAN COHERENT STRUCTURES IN TWO-DIMENSIONAL FLOWS BASED ON THE EULERIAN-TYPE ALGORITHMS

  • Corresponding author: Email: cfxue@ycit.edu.cn(C. Xue)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12071409) and Natural Science Foundation of Jiangsu Province (No. BK20211293)
  • Based on the so-called mixing-based partition, we propose an efficient Eulerian algorithm to identify the hyperbolic Lagrangian coherent structure (LCS) of any given two-dimensional (2D) flow fields, which is framework independent. To extract the required LCS, the proposed algorithm only needs to solve one single partial differential equation. Moreover, data is only required at mesh points in the implementation of the proposed algorithm. In contrast, traditional Lagrangian ray tracing approach needs to solve a system consisting of two ordinary differential equations together with a line integral along the particular particle trajectory. Furthermore, if the velocity data is only available at mesh points, the Lagrangian approach needs to implement interpolation to obtain the velocity and also the velocity gradient at non-mesh points along the particle trajectory taking off from each mesh point, which could be quite time-consuming. Based on the doubling technique, we also propose an efficient iterative Eulerian-type algorithm to identify the longtime LCS for 2D periodic flows. Numerical examples are provided to confirm the accuracy, efficiency and effectiveness of the proposed Eulerian algorithms.

    MSC: 37A25, 37M25, 76M27
  • 加载中
  • [1] M. Badas, F. Domenichini and G. Querzoli, Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents, Meccania, 2017, 52, 529-544. doi: 10.1007/s11012-016-0364-8

    CrossRef Google Scholar

    [2] B. Cardwell and K. Mohseni, Vortex shedding over two-dimensional airfoil: Where do the particles come from?, AIAA J., 2008, 46, 545-547. doi: 10.2514/1.35223

    CrossRef Google Scholar

    [3] A. Carusone, C. Sicot, J. Bonnet and J. Borée, Transient dynamical effects induced by single-pulse fluidic actuation over an airfoil, Exp. Fluids, 2021, 62, 25. doi: 10.1007/s00348-020-03108-0

    CrossRef Google Scholar

    [4] M. Dawoodian and A. Sau, Kinetics and prey capture by a paddling jellyfish: three-dimensional simulation and Lagrangian coherent structure analysis, J. Fluid Mech., 2021, DOI: 10.1017/jfm.2020.1069.

    CrossRef Google Scholar

    [5] S. Gottlieb and C. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation, 1998, 67, 73-85. doi: 10.1090/S0025-5718-98-00913-2

    CrossRef Google Scholar

    [6] M. Green, C. Rowley and A. Smiths, Using hyperbolic Lagrangian coherent structures to investigate vortices in biospired fluid flows, Chaos, 2010, 20, 017510. doi: 10.1063/1.3270045

    CrossRef Google Scholar

    [7] G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows, Physica D, 2001, 149, 248-277. doi: 10.1016/S0167-2789(00)00199-8

    CrossRef Google Scholar

    [8] G. Haller, Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence, Phys. Fluids A, 2001, 13, 3368-3385.

    Google Scholar

    [9] G. Haller, Lagrangian coherent structures from approximate velocity data, Physics of Fluid, 2002, 14, 1851-1861. doi: 10.1063/1.1477449

    CrossRef Google Scholar

    [10] G. Haller, A variational theory of hyperbolic Lagrangian coherent structure, Physica D, 2011, 240, 574-598. doi: 10.1016/j.physd.2010.11.010

    CrossRef Google Scholar

    [11] G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, Chaos, 2011, 21(2), 017510.

    Google Scholar

    [12] G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence, Physica D, 2000, 147, 352-370. doi: 10.1016/S0167-2789(00)00142-1

    CrossRef Google Scholar

    [13] D. Lasagna, A. Sharma and J. Meyers, Periodic shadowing sensitivity analysis of chaotic systems, J. Comput. Phys., 2019, 391, 119-141. doi: 10.1016/j.jcp.2019.04.021

    CrossRef Google Scholar

    [14] F. Lekien and N. Leonard, Dynamically consistent Lagrangian coherent structures, Experimental Chaos: 8-th Experimental Chaos Conference, 2004, 132-139.

    Google Scholar

    [15] F. Lekien and S. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos, 2010, 20, 017505. doi: 10.1063/1.3278516

    CrossRef Google Scholar

    [16] F. Lekien, S. Shadden and J. Marsden, Lagrangian coherent structures in $ n$-dimensional systems, Journal of Mathematical Physics, 2007, 48, 065404. doi: 10.1063/1.2740025

    CrossRef $ n$-dimensional systems" target="_blank">Google Scholar

    [17] S. Leung, An Eulerian approach for computing the finite time Lyapunov exponent, J. Comput. Phys., 2011, 230, 3500-3524. doi: 10.1016/j.jcp.2011.01.046

    CrossRef Google Scholar

    [18] S. Leung, The backward phase flow method for the Eulerian finite time Lyapunov exponent computations, Chaos, 2013, 23, 043132. doi: 10.1063/1.4847175

    CrossRef Google Scholar

    [19] S. Leung, G. You, T. Wong and Y. K. Ng, Recent developments in Eulerian approaches for visualizing continuous dynamical systems, Proceedings of the Seventh International Congress of Chinese Mathematicians, 2019, 2, 579-622.

    Google Scholar

    [20] D. Lipinski and K. Mohseni, Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria, J. Exp. Biology, 2009, 212, 2436-2447. doi: 10.1242/jeb.026740

    CrossRef Google Scholar

    [21] X. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 1994, 115, 200-212. doi: 10.1006/jcph.1994.1187

    CrossRef Google Scholar

    [22] X. Liu, S. J. Osher and T. Chan, Weighted Essentially NonOscillatory schemes, J. Comput. Phys., 1994, 115, 200-212. doi: 10.1006/jcph.1994.1187

    CrossRef Google Scholar

    [23] S. Lukens, X. Yang and L. Fauci, Using Lagrangian coherent structures to analyze fluid mixing by cillia, Chaos, 2010, 20, 017511. doi: 10.1063/1.3271340

    CrossRef Google Scholar

    [24] B. Manda, B. Senyange and C. Skokos, Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices, Phys. Rev. E, 2020, 101, 032206. doi: 10.1103/PhysRevE.101.032206

    CrossRef Google Scholar

    [25] S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2003.

    Google Scholar

    [26] S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 1988, 79, 12-49. doi: 10.1016/0021-9991(88)90002-2

    CrossRef Google Scholar

    [27] T. Sagristè, S. Jordan and S. F., Visual analysis of the finite-time Lyapunov exponent, Comput. Graph. Forum, 2020, 39(3), 331-342. doi: 10.1111/cgf.13984

    CrossRef Google Scholar

    [28] T. Sapsis and G. Haller, Inertial particle dynamics in a hurricane, Journal of the Atmospheric Sciences, 2009, 66, 2481-2492. doi: 10.1175/2009JAS2865.1

    CrossRef Google Scholar

    [29] S. Shadden, F. Lekien and J. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 2005, 212, 271-304. doi: 10.1016/j.physd.2005.10.007

    CrossRef Google Scholar

    [30] C. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, 1697 (Edited by B. Cockburn, C. Johnson, C. Shu and E. Tadmor), Springer, 1998, 325-432. Lecture Notes in Mathematics.

    Google Scholar

    [31] T. Solomon and J. Gollub, Chaotic particle-transport in timedependent rayleigh-b¡äenard convection, Phys. Rev. A, 1988, 38, 6280-6286. doi: 10.1103/PhysRevA.38.6280

    CrossRef Google Scholar

    [32] W. Tang, P. Chan and G. Haller, Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong international airport, Chaos, 2010, 20, 017502. doi: 10.1063/1.3276061

    CrossRef Google Scholar

    [33] W. Tang and T. Peacock, Lagrangian coherent structures and internal wave attractors, Chaos, 2010, 20, 017508. doi: 10.1063/1.3273054

    CrossRef Google Scholar

    [34] G. You and S. Leung, An Eulerian method for computing the coherent ergodic partition of continuous dynamical systems, J. Comp. Phys., 2014, 264, 112-132. doi: 10.1016/j.jcp.2014.01.034

    CrossRef Google Scholar

    [35] G. You and S. Leung, Eulerian based interpolation schemes for flow map construction and line integral computation with applications to Lagrangian coherent structures extraction, Journal of Scientific Computing, 2018, 74, 70-96. doi: 10.1007/s10915-017-0424-9

    CrossRef Google Scholar

    [36] G. You and S. Leung, An improved Eulerian approach for the finite time Lyapunov exponent, Journal of Scientific Computing, 2018, 76, 1407-1435. doi: 10.1007/s10915-018-0669-y

    CrossRef Google Scholar

    [37] G. You and S. Leung, Fast construction of forward flow maps using Eulerian based interpolation schemes, Journal of Scientific Computing, 2020, 82, 32. doi: 10.1007/s10915-020-01141-z

    CrossRef Google Scholar

    [38] G. You and S. Leung, Computing the finite time Lyapunov exponent for flows with uncertainties, J. Comp. Phys., 2021, 405, 109905.

    Google Scholar

    [39] G. You, Y. Shan and Y. Xu, Fast computations for the Lagrangian-averaged vorticity deviation based on the Eulerian formulations, International Journal of Computational Methods, 2020, 17, 1950078. doi: 10.1142/S0219876219500786

    CrossRef Google Scholar

    [40] G. You, T. Wong and S. Leung, Eulerian methods for visualizing continuous dynamical systems using Lyapunov exponents, SIAM Journal on Scientific Computing, 2017, 39(2), A415-A437. doi: 10.1137/16M1066890

    CrossRef Google Scholar

Figures(13)  /  Tables(1)

Article Metrics

Article views(2575) PDF downloads(291) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint