2022 Volume 12 Issue 2
Article Contents

Yu Tian, Yue Zhang. THE EXISTENCE OF SOLUTION AND DEPENDENCE ON FUNCTIONAL PARAMETER FOR BVP OF FRACTIONAL DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 591-608. doi: 10.11948/20210249
Citation: Yu Tian, Yue Zhang. THE EXISTENCE OF SOLUTION AND DEPENDENCE ON FUNCTIONAL PARAMETER FOR BVP OF FRACTIONAL DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 591-608. doi: 10.11948/20210249

THE EXISTENCE OF SOLUTION AND DEPENDENCE ON FUNCTIONAL PARAMETER FOR BVP OF FRACTIONAL DIFFERENTIAL EQUATION

  • In this paper, fractional differential equations of $p$-$q$-Laplacian with instantaneous and non-instantaneous impulses are considered. The existence result is obtained by using the variational approach. Furthermore, we establish the dependence on functional parameters for classical solutions of the boundary value problem with $L^1$ right hand side. The interesting points are $p$-$q$-Laplace operator and dependence on functional parameters.

    MSC: 34A08, 35R11, 34K10
  • 加载中
  • [1] R. Agarwal, D. O'Regan and S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 2017, 53, 147-168. doi: 10.1007/s12190-015-0961-z

    CrossRef Google Scholar

    [2] R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer, Cham, 2017.

    Google Scholar

    [3] G. A. Afrouzi and A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2018, 21, 1565-1584. doi: 10.1515/fca-2018-0082

    CrossRef Google Scholar

    [4] S. Abbas, M. Benchohra and J. J. Nieto, Caputo-Fabrizio fractional differential equations with non instantaneous impulses, Rend. Circ. Mat. Palermo, II. Ser., 2021. DOIhttps://doi.org/10.1007/s12215-020-00591-6. doi: 10.1007/s12215-020-00591-6

    CrossRef Google Scholar

    [5] H. Abbas, M. Belmekki and A. Cabada, Positive solutions for fractional boundary value problems with integral boundary conditions and parameter dependence, Computational and Applied Mathematics, 2021, 40, 1-15. doi: 10.1007/s40314-020-01383-5

    CrossRef Google Scholar

    [6] L. Bai and J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 2017, 73, 44-48. doi: 10.1016/j.aml.2017.02.019

    CrossRef Google Scholar

    [7] Z. Bai, S. Sun, Z. Du and Y. Chen, The green function for a class of Caputo fractional differential equations with a convection term, Fract. Calc. Appl. Anal., 2020, 23, 787-798. doi: 10.1515/fca-2020-0039

    CrossRef Google Scholar

    [8] Z. Bai and T. Qiu, Existence of positive solution for singular fractional differential equation, Applied Mathematics and Computation, 2009, 215, 2761-2767. doi: 10.1016/j.amc.2009.09.017

    CrossRef Google Scholar

    [9] L. Bai, J. J. Nieto and J. M. Uzal, On a delayed epidemic model with non-instantaneous impulses, Communications on Pure Applied Analysis, 2020, 19, 1915-1930. doi: 10.3934/cpaa.2020084

    CrossRef Google Scholar

    [10] B. Bouharket, A. Cabada and H. Ahmed, Existence results for systems of conformable fractional differential equations, Archivum Mathematicum, 2019, 55, 69-82.

    Google Scholar

    [11] A. Cabada, N. D. Dimitrov Nikolay and J. M. Jonnalagadda, Non-Trivial solutions of Non-Autonomous nabla fractional difference boundary alue problems, Symmetry, 2021, 13, 1101-1101. doi: 10.3390/sym13061101

    CrossRef Google Scholar

    [12] A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, Journal of Mathematical Analysis and Applications, 2012, 389, 403-411. doi: 10.1016/j.jmaa.2011.11.065

    CrossRef Google Scholar

    [13] L. Cherfils and V. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with p-q-Laplacian, Commun. Pure Appl. Anal., 2004, 4, 9-22.

    Google Scholar

    [14] H. Chen and Z. He, New results for perturbed hamiltonian systems with impulses, Appl. Math. Comput., 2012, 218, 9489-9497.

    Google Scholar

    [15] I. T. Huseynov, A. Ahmadova, A. Fernandez, et al, Explicit analytical solutions of incommensurate fractional differential equation systems, Applied Mathematics and Computation, 2020, 390, 125590.

    Google Scholar

    [16] F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181-1199. doi: 10.1016/j.camwa.2011.03.086

    CrossRef Google Scholar

    [17] M. Jia and X. Liu, Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comput., 2014, 232, 313-323.

    Google Scholar

    [18] A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 2018, 83, 95-102. doi: 10.1016/j.aml.2018.03.014

    CrossRef Google Scholar

    [19] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland and Mathematics Studies., 2006, 204.

    Google Scholar

    [20] R. Liang and J. Shen, Periodic boundary value problem for the first order functional differential equations with impulses, Applied Mathematics and Computation, 2009, 193, 560-571.

    Google Scholar

    [21] D. Li, F. Chen, Y. Wu and Y. An, Multiple solutions for a class of p-Laplacian type fractional boundary value problems with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 106, 106352. doi: 10.1016/j.aml.2020.106352

    CrossRef Google Scholar

    [22] J. Mawhin and M. Willem, Critical Point Theorey and Hamiltonian Systems, Springer, New York, 1989.

    Google Scholar

    [23] Y. Qiao, F. Chen and Y. An, Variational method for p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Mathematical Methods in the Applied Sciences, 2021, 44.

    Google Scholar

    [24] Z. Qin and S. Sun, Solvability and Stability for Singular Fractional (p, q)-difference Equation, Journal of Nonlinear Modeling and Analysis, 2021, 3, 647-661.

    Google Scholar

    [25] J. E. Restrepo, M. Ruzhansky and D. Suragan, Explicit solutions for linear variable-coefficient fractional differential equations with respect to functions, Applied Mathematics and Computation, 2021, 403.

    Google Scholar

    [26] S. Shi, Some notes on supersolutions of fractional p-Laplace equation, J. Math. Anal. Appl., 2018, 463, 1052-1074. doi: 10.1016/j.jmaa.2018.03.064

    CrossRef Google Scholar

    [27] J. Simon, Regularite de la solution dune equation non lineaire dans RN(ed. P. Benilan and J. Robert), Lecture Notes in Mathematics, 1978, 665.

    Google Scholar

    [28] Y. Tian and M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2019, 94, 160-165. doi: 10.1016/j.aml.2019.02.034

    CrossRef Google Scholar

    [29] M. Xiang, V. D. Radulescu and B. Zhang, Fractional Kirchhoff problems with critical TrudingeršCMoser nonlinearity, Calc. Var., 2019, 58, 57. doi: 10.1007/s00526-019-1499-y

    CrossRef Google Scholar

    [30] P. Yang, J. Wang, D. O'Regan and M. Feckan, Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space, Commun. Nonlinear Sci. Numer. Simul., 2019, 75, 174-191. doi: 10.1016/j.cnsns.2019.03.029

    CrossRef Google Scholar

    [31] J. You and S. Sun, Mixed Boundary Value Problems for a Class of Fractional Differential Equations with Impulses, Journal of Nonlinear Modeling and Analysis, 2021, 3, 263-273.

    Google Scholar

    [32] W. Zhang and W. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2019, 99, 105-111.

    Google Scholar

    [33] Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, second ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. 2017.

    Google Scholar

    [34] Y. Zhou, Basic Theory of Fractional Differential Equations, Springer, Cham., 2016.

    Google Scholar

    [35] J. Zhou, Y. Deng and Y. Wang, Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 104, 106251. doi: 10.1016/j.aml.2020.106251

    CrossRef Google Scholar

    [36] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer-Verlag, Berlin, 1990, 2.

    Google Scholar

Article Metrics

Article views(2272) PDF downloads(539) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint