Citation: | Yu Tian, Yue Zhang. THE EXISTENCE OF SOLUTION AND DEPENDENCE ON FUNCTIONAL PARAMETER FOR BVP OF FRACTIONAL DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 591-608. doi: 10.11948/20210249 |
In this paper, fractional differential equations of $p$-$q$-Laplacian with instantaneous and non-instantaneous impulses are considered. The existence result is obtained by using the variational approach. Furthermore, we establish the dependence on functional parameters for classical solutions of the boundary value problem with $L^1$ right hand side. The interesting points are $p$-$q$-Laplace operator and dependence on functional parameters.
[1] | R. Agarwal, D. O'Regan and S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 2017, 53, 147-168. doi: 10.1007/s12190-015-0961-z |
[2] | R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer, Cham, 2017. |
[3] | G. A. Afrouzi and A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2018, 21, 1565-1584. doi: 10.1515/fca-2018-0082 |
[4] | S. Abbas, M. Benchohra and J. J. Nieto, Caputo-Fabrizio fractional differential equations with non instantaneous impulses, Rend. Circ. Mat. Palermo, II. Ser., 2021. DOIhttps://doi.org/10.1007/s12215-020-00591-6. doi: 10.1007/s12215-020-00591-6 |
[5] | H. Abbas, M. Belmekki and A. Cabada, Positive solutions for fractional boundary value problems with integral boundary conditions and parameter dependence, Computational and Applied Mathematics, 2021, 40, 1-15. doi: 10.1007/s40314-020-01383-5 |
[6] | L. Bai and J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 2017, 73, 44-48. doi: 10.1016/j.aml.2017.02.019 |
[7] | Z. Bai, S. Sun, Z. Du and Y. Chen, The green function for a class of Caputo fractional differential equations with a convection term, Fract. Calc. Appl. Anal., 2020, 23, 787-798. doi: 10.1515/fca-2020-0039 |
[8] | Z. Bai and T. Qiu, Existence of positive solution for singular fractional differential equation, Applied Mathematics and Computation, 2009, 215, 2761-2767. doi: 10.1016/j.amc.2009.09.017 |
[9] | L. Bai, J. J. Nieto and J. M. Uzal, On a delayed epidemic model with non-instantaneous impulses, Communications on Pure Applied Analysis, 2020, 19, 1915-1930. doi: 10.3934/cpaa.2020084 |
[10] | B. Bouharket, A. Cabada and H. Ahmed, Existence results for systems of conformable fractional differential equations, Archivum Mathematicum, 2019, 55, 69-82. |
[11] | A. Cabada, N. D. Dimitrov Nikolay and J. M. Jonnalagadda, Non-Trivial solutions of Non-Autonomous nabla fractional difference boundary alue problems, Symmetry, 2021, 13, 1101-1101. doi: 10.3390/sym13061101 |
[12] | A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, Journal of Mathematical Analysis and Applications, 2012, 389, 403-411. doi: 10.1016/j.jmaa.2011.11.065 |
[13] | L. Cherfils and V. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with p-q-Laplacian, Commun. Pure Appl. Anal., 2004, 4, 9-22. |
[14] | H. Chen and Z. He, New results for perturbed hamiltonian systems with impulses, Appl. Math. Comput., 2012, 218, 9489-9497. |
[15] | I. T. Huseynov, A. Ahmadova, A. Fernandez, et al, Explicit analytical solutions of incommensurate fractional differential equation systems, Applied Mathematics and Computation, 2020, 390, 125590. |
[16] | F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181-1199. doi: 10.1016/j.camwa.2011.03.086 |
[17] | M. Jia and X. Liu, Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comput., 2014, 232, 313-323. |
[18] | A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 2018, 83, 95-102. doi: 10.1016/j.aml.2018.03.014 |
[19] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland and Mathematics Studies., 2006, 204. |
[20] | R. Liang and J. Shen, Periodic boundary value problem for the first order functional differential equations with impulses, Applied Mathematics and Computation, 2009, 193, 560-571. |
[21] | D. Li, F. Chen, Y. Wu and Y. An, Multiple solutions for a class of p-Laplacian type fractional boundary value problems with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 106, 106352. doi: 10.1016/j.aml.2020.106352 |
[22] | J. Mawhin and M. Willem, Critical Point Theorey and Hamiltonian Systems, Springer, New York, 1989. |
[23] | Y. Qiao, F. Chen and Y. An, Variational method for p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Mathematical Methods in the Applied Sciences, 2021, 44. |
[24] | Z. Qin and S. Sun, Solvability and Stability for Singular Fractional (p, q)-difference Equation, Journal of Nonlinear Modeling and Analysis, 2021, 3, 647-661. |
[25] | J. E. Restrepo, M. Ruzhansky and D. Suragan, Explicit solutions for linear variable-coefficient fractional differential equations with respect to functions, Applied Mathematics and Computation, 2021, 403. |
[26] | S. Shi, Some notes on supersolutions of fractional p-Laplace equation, J. Math. Anal. Appl., 2018, 463, 1052-1074. doi: 10.1016/j.jmaa.2018.03.064 |
[27] | J. Simon, Regularite de la solution dune equation non lineaire dans RN(ed. P. Benilan and J. Robert), Lecture Notes in Mathematics, 1978, 665. |
[28] | Y. Tian and M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2019, 94, 160-165. doi: 10.1016/j.aml.2019.02.034 |
[29] | M. Xiang, V. D. Radulescu and B. Zhang, Fractional Kirchhoff problems with critical TrudingeršCMoser nonlinearity, Calc. Var., 2019, 58, 57. doi: 10.1007/s00526-019-1499-y |
[30] | P. Yang, J. Wang, D. O'Regan and M. Feckan, Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space, Commun. Nonlinear Sci. Numer. Simul., 2019, 75, 174-191. doi: 10.1016/j.cnsns.2019.03.029 |
[31] | J. You and S. Sun, Mixed Boundary Value Problems for a Class of Fractional Differential Equations with Impulses, Journal of Nonlinear Modeling and Analysis, 2021, 3, 263-273. |
[32] | W. Zhang and W. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2019, 99, 105-111. |
[33] | Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, second ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. 2017. |
[34] | Y. Zhou, Basic Theory of Fractional Differential Equations, Springer, Cham., 2016. |
[35] | J. Zhou, Y. Deng and Y. Wang, Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 104, 106251. doi: 10.1016/j.aml.2020.106251 |
[36] | E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer-Verlag, Berlin, 1990, 2. |