2022 Volume 12 Issue 2
Article Contents

Fushan Li, Wen Chen. CONTROL DESIGN FOR A CLASS OF GENERAL NONLINEAR REACTION DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 609-621. doi: 10.11948/20210250
Citation: Fushan Li, Wen Chen. CONTROL DESIGN FOR A CLASS OF GENERAL NONLINEAR REACTION DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 609-621. doi: 10.11948/20210250

CONTROL DESIGN FOR A CLASS OF GENERAL NONLINEAR REACTION DIFFUSION EQUATIONS

  • We consider a class of nonlinear parabolic equation with general source function $f(u)$, conduction function $g(u)$ and conduction coefficient $\rho(|\nabla u|^2)$ in multi-dimensional space. We establish new control conditions to guarantee that the positive solution exists globally. At the same time, under suitable control conditions, by means of the Sobolev inequality in multi-dimensional space, we obtain upper and lower bounds of the blow-up time $t^*$ in $\mathbb{R}^{n}\, (n\geqslant 2)$. Our work generalize the models, improve the method and remove the constraint of spatial dimension in many literatures.

    MSC: 35B35, 35G05, 35G16, 35L30
  • 加载中
  • [1] J. Ding and H. Hu, Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions, J. Math. Anal. Appl., 2016, 433, 1718-1735. doi: 10.1016/j.jmaa.2015.08.046

    CrossRef Google Scholar

    [2] J. Ding and X. Shen, Blow-up analysis for a class of nonlinear reaction diffusion equations with Robin boundary conditions, Math. Meth. Appl. Sci., 2018, 41, 1683-1696. doi: 10.1002/mma.4697

    CrossRef Google Scholar

    [3] C. Enache, Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition, Appl. Math. Lett., 2011, 24(3), 288-292. doi: 10.1016/j.aml.2010.10.006

    CrossRef Google Scholar

    [4] Z. Fang and Y. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys., 2015, 66, 2525-2541. doi: 10.1007/s00033-015-0537-7

    CrossRef Google Scholar

    [5] F. Li and J. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 2012, 385(2), 1005-1014. doi: 10.1016/j.jmaa.2011.07.018

    CrossRef Google Scholar

    [6] F. Li and J. Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Bound. Value Probl., 2014, 219.

    Google Scholar

    [7] F. Li and Y. Bao, Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition, J. Dyn. Control Syst., 2017, 23, 301-315. doi: 10.1007/s10883-016-9320-0

    CrossRef Google Scholar

    [8] F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Comput., 2018, 8, 390-401.

    Google Scholar

    [9] F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Comput., 2016, 274, 383-392.

    Google Scholar

    [10] F. Li and S. Xi, Dynamic properties of a nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions. I, Math. Notes, 2019, 106(5), 814-832.

    Google Scholar

    [11] F. Li, S. Xi, K. Xu and X. Xue, Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II, J. Appl. Anal. Comput., 2019, 9(6), 2318-2332.

    Google Scholar

    [12] F. Li and W. Zhu, Optimized uniform decay estimate of the solution to Petrovsky equation with memory, Appl. Math. Opt., 2021, 84, 711-736. doi: 10.1007/s00245-020-09659-2

    CrossRef Google Scholar

    [13] M. H. Protter and H. F. Weinberher, Maximum Principle in differential equations, Prentice-Hall, Englewood Cliffs, 1967.

    Google Scholar

    [14] L. E. Payne and P. W. Schaefer, Lower bound for blow-up time in parabolic problems under Neumann conditions, Appl. Anal., 2006, 85(10), 1301-1311.

    Google Scholar

    [15] L. E. Payne and G. A. Philippin, Schaefer, P.W. : Bounds for blow-up time in nonlinear parabolic problems, J. Math. Anal. Appl., 2008, 338(1), 438-447. doi: 10.1016/j.jmaa.2007.05.022

    CrossRef Google Scholar

    [16] L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal., 2008, 69(10), 3495-3502. doi: 10.1016/j.na.2007.09.035

    CrossRef Google Scholar

    [17] L. E. Payne, G. A. Philippin and S. V. Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys., 2010, 61(6), 999-1007. doi: 10.1007/s00033-010-0071-6

    CrossRef Google Scholar

    [18] L. E. Payne, G. A. Philippin and S. V. Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II, Nonlinear Anal., 2010, 73(4), 971-978. doi: 10.1016/j.na.2010.04.023

    CrossRef Google Scholar

    [19] Y. Xin and Z. Zhou, Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition, J. Diff. Eqs., 2016, 261, 2738-2783. doi: 10.1016/j.jde.2016.05.011

    CrossRef Google Scholar

    [20] Y. Xin and Z. Zhou, Improvements on lowerbounds for the blow-up time under local nonlinear Neumann conditions, J. Diff. Eqs., 2018, 265, 830-862. doi: 10.1016/j.jde.2018.03.013

    CrossRef Google Scholar

    [21] J. Zhang and F. Li, Global existence and blow-up phenomena for divergence form parabolic equation with time-dependent coefficient in multi-dimensional space, Z. Angew. Math. Phys., 2019, 70, 150. doi: 10.1007/s00033-019-1195-y

    CrossRef Google Scholar

    [22] S. Zheng and F. Li, Dynamic properties of the $ p$-Laplacian reaction-diffusion equation in multi-dimensional space, Qual. Theor. Dyn. Syst., 2021, 20, 53. doi: 10.1007/s12346-021-00494-6

    CrossRef $ p$-Laplacian reaction-diffusion equation in multi-dimensional space" target="_blank">Google Scholar

Article Metrics

Article views(1948) PDF downloads(338) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint