Citation: | Fushan Li, Wen Chen. CONTROL DESIGN FOR A CLASS OF GENERAL NONLINEAR REACTION DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 609-621. doi: 10.11948/20210250 |
We consider a class of nonlinear parabolic equation with general source function $f(u)$, conduction function $g(u)$ and conduction coefficient $\rho(|\nabla u|^2)$ in multi-dimensional space. We establish new control conditions to guarantee that the positive solution exists globally. At the same time, under suitable control conditions, by means of the Sobolev inequality in multi-dimensional space, we obtain upper and lower bounds of the blow-up time $t^*$ in $\mathbb{R}^{n}\, (n\geqslant 2)$. Our work generalize the models, improve the method and remove the constraint of spatial dimension in many literatures.
[1] | J. Ding and H. Hu, Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions, J. Math. Anal. Appl., 2016, 433, 1718-1735. doi: 10.1016/j.jmaa.2015.08.046 |
[2] | J. Ding and X. Shen, Blow-up analysis for a class of nonlinear reaction diffusion equations with Robin boundary conditions, Math. Meth. Appl. Sci., 2018, 41, 1683-1696. doi: 10.1002/mma.4697 |
[3] | C. Enache, Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition, Appl. Math. Lett., 2011, 24(3), 288-292. doi: 10.1016/j.aml.2010.10.006 |
[4] | Z. Fang and Y. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys., 2015, 66, 2525-2541. doi: 10.1007/s00033-015-0537-7 |
[5] | F. Li and J. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 2012, 385(2), 1005-1014. doi: 10.1016/j.jmaa.2011.07.018 |
[6] | F. Li and J. Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Bound. Value Probl., 2014, 219. |
[7] | F. Li and Y. Bao, Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition, J. Dyn. Control Syst., 2017, 23, 301-315. doi: 10.1007/s10883-016-9320-0 |
[8] | F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Comput., 2018, 8, 390-401. |
[9] | F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Comput., 2016, 274, 383-392. |
[10] | F. Li and S. Xi, Dynamic properties of a nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions. I, Math. Notes, 2019, 106(5), 814-832. |
[11] | F. Li, S. Xi, K. Xu and X. Xue, Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II, J. Appl. Anal. Comput., 2019, 9(6), 2318-2332. |
[12] | F. Li and W. Zhu, Optimized uniform decay estimate of the solution to Petrovsky equation with memory, Appl. Math. Opt., 2021, 84, 711-736. doi: 10.1007/s00245-020-09659-2 |
[13] | M. H. Protter and H. F. Weinberher, Maximum Principle in differential equations, Prentice-Hall, Englewood Cliffs, 1967. |
[14] | L. E. Payne and P. W. Schaefer, Lower bound for blow-up time in parabolic problems under Neumann conditions, Appl. Anal., 2006, 85(10), 1301-1311. |
[15] | L. E. Payne and G. A. Philippin, Schaefer, P.W. : Bounds for blow-up time in nonlinear parabolic problems, J. Math. Anal. Appl., 2008, 338(1), 438-447. doi: 10.1016/j.jmaa.2007.05.022 |
[16] | L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal., 2008, 69(10), 3495-3502. doi: 10.1016/j.na.2007.09.035 |
[17] | L. E. Payne, G. A. Philippin and S. V. Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I, Z. Angew. Math. Phys., 2010, 61(6), 999-1007. doi: 10.1007/s00033-010-0071-6 |
[18] | L. E. Payne, G. A. Philippin and S. V. Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II, Nonlinear Anal., 2010, 73(4), 971-978. doi: 10.1016/j.na.2010.04.023 |
[19] | Y. Xin and Z. Zhou, Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition, J. Diff. Eqs., 2016, 261, 2738-2783. doi: 10.1016/j.jde.2016.05.011 |
[20] | Y. Xin and Z. Zhou, Improvements on lowerbounds for the blow-up time under local nonlinear Neumann conditions, J. Diff. Eqs., 2018, 265, 830-862. doi: 10.1016/j.jde.2018.03.013 |
[21] | J. Zhang and F. Li, Global existence and blow-up phenomena for divergence form parabolic equation with time-dependent coefficient in multi-dimensional space, Z. Angew. Math. Phys., 2019, 70, 150. doi: 10.1007/s00033-019-1195-y |
[22] |
S. Zheng and F. Li, Dynamic properties of the $ p$-Laplacian reaction-diffusion equation in multi-dimensional space, Qual. Theor. Dyn. Syst., 2021, 20, 53. doi: 10.1007/s12346-021-00494-6
CrossRef $ p$-Laplacian reaction-diffusion equation in multi-dimensional space" target="_blank">Google Scholar |