Citation: | Jinyu Fan, Jianbin Xiao, Mingliang Fang. ENTIRE FUNCTIONS THAT SHARE A SET WITH THEIR DIFFERENCES[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 662-675. doi: 10.11948/20210260 |
In this paper, we study the uniqueness of entire functions concerning deficient value and exponent of convergence, and have mainly proved the following theorem: Let $S=\{1, \omega , \omega ^2, \cdots , \omega ^{n-1}\}$, where $\omega ^n=1$, $n\ge 1$ is an integer, let $k$ be a positive integer, and let $f$ be a nonconstant entire function such that $\lambda(f)<\rho(f)<\infty$. If $f(z)$ and $\Delta _{\eta }^kf(z)$ share $S$ IM, where $\eta $ is a nonzero complex number, then $f(z)=e^{az+b}$, where $a(\neq0)$ and $b$ are two finite complex numbers. The results obtained in this paper improve some results due to Li ([
[1] | M. B. Ahamed, An investigation on the conjecture of Chen and Yi, Results Math., 2019, 74(3), 122(28). |
[2] | W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc., 2007, 142, 133-147. doi: 10.1017/S0305004106009777 |
[3] |
Y. M. Chiang and S. Feng, On the Nevanlinna characteristic of $f(z+\eta) $ and difference equations in the complex plane, Ramanujan J., 2008, 16(1), 105-129. doi: 10.1007/s11139-007-9101-1
CrossRef $f(z+\eta) $ and difference equations in the complex plane" target="_blank">Google Scholar |
[4] | Y. M. Chiang and S. Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 2009, 361, 3767-3791. doi: 10.1090/S0002-9947-09-04663-7 |
[5] | A. El Farissi and Z. Latreuch and A. Asiri, On the uniqueness theory of entire functions and their difference operators, Complex Anal. Oper. Theory, 2016, 10(6), 1317-1327. doi: 10.1007/s11785-015-0514-3 |
[6] | M. Fang and H. Guo, On unique range sets for meromorphic or entire functions, Acta Math. Sinica(N.S. ), 1998, 14(4), 569-576. doi: 10.1007/BF02580416 |
[7] | M. Fang and Y. Wang, Higher order difference operators and uniqueness of meromorphic functions, Anal. Math. Phys., 2021, 11(2), 93(1-13). |
[8] | M. Fang and W. Xu, On the uniqueness of entire functions, Bull. Malaysian Math. Soc., 1996, 19(1), 29-37. |
[9] | W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964. |
[10] | R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logaritheoremic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2), 477-487. doi: 10.1016/j.jmaa.2005.04.010 |
[11] | R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31(2), 463-478. |
[12] | R. G. Halburd, R. Korhonen and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc., 2014, 366(8), 4267-4298. doi: 10.1090/S0002-9947-2014-05949-7 |
[13] | I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin, 1993. |
[14] | K. Liu, Meromorphic functions sharing a set with applications to difference equation, J. Math. Anal. Appl., 2009, 359, 384-393. doi: 10.1016/j.jmaa.2009.05.061 |
[15] | X. Li, Entire functions sharing a finite set with their difference operators, Comput. Methods Funct. Theory, 2012, 12, 307-328. doi: 10.1007/BF03321829 |
[16] | I. Lahiri, An entire function sharing two values with its linear differential polynomial, Bull. Aust. Math. Soc., 2018, 97(2), 265-273. doi: 10.1017/S000497271700079X |
[17] | W. Lin and K. Ishizaki, A "3IM+1CM" result for periodic meromorphic functions, J. Math. Anal. Appl., 2018, 466(1), 726-732. doi: 10.1016/j.jmaa.2018.06.010 |
[18] | I. Laine and C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 2007, 76(3), 556-566. doi: 10.1112/jlms/jdm073 |
[19] | A. Z. Mokhon'ko, The Nevanlinna characteristics of certain meromorphic function, Teor. Funckciĭ Funckcional. Anal. i Priložen., 1971, 14, 83-87. |
[20] | F. Niu, J. Qi and Z. Zhou, Uniqueness problems about entire functions with their difference operator sharing sets, J. Math., 2020, 1-6, Art. ID: 7586181. |
[21] | S. D. Quang, H. H. Giang and T. A. Hai, Meromorphic functions on annuli sharing few small functions with truncated multiplicities, Complex Anal. Oper. Theory, 2019, 13(4), 1693-1711. doi: 10.1007/s11785-018-0808-3 |
[22] | J. Qi, Y. Wang and Y. Gu, A note on entire functions sharing a finite set with their difference operators, Adv. Difference Equ., 2019, 114, 1-7. doi: 10.1186/s13662-019-1992-9 |
[23] | P. Wang, D. Liu and M. Fang, Deficiency and value distribution of meromorphic functions concerning difference, Acta Math. Sinica (Chin. Ser. ), 2016, 59(3), 357-362. |
[24] | C. Yang, On deficiencies of differential polynomials, Math Z, 1972, 125(2), 107-112. doi: 10.1007/BF01110921 |
[25] | L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993. |
[26] | C. Yang and H. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003. |