Citation: | Gang Wang, Chong Wang, Lixia Liu. IDENTIFYING STRONG ELLIPTICITY VIA BOUNDS ON THE MINIMUM M-EIGENVALUE OF ELASTICITY Z-TENSORS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 609-622. doi: 10.11948/20210284 |
$M$-eigenvalues of fourth-order partially symmetric tensors play an important role in the nonlinear elastic material analysis. In this paper, we establish sharp upper and lower bounds on the minimum $M$-eigenvalue via extreme eigenvalue of the symmetric matrices extracted from elasticity $Z$-tensors without irreducible conditions, which improves some existing results. Based on the lower bound estimations for the minimum $M$-eigenvalue, we provide some checkable sufficient or necessary conditions for the strong ellipticity of elasticity $Z$-tensors. Numerical examples are given to demonstrate the proposed results.
[1] | S. Chirita, A. Danescu and M. Ciarletta, On the strong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 2007, 87, 1–27. doi: 10.1007/s10659-006-9096-7 |
[2] | B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Contin. Dyn. Syst. Ser. B, 2001, 1, 257–263. |
[3] | G. Dahl, J. Leinaas and J. Myrheim, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 2007, 420(2–3), 711–725. |
[4] |
W. Ding, J. Liu, L. Qi and H. Yan, Elasticity $M$-tensors and the strong ellipticity condition, Appl. Math. Comput., 2020, 373, 124982.
$M$-tensors and the strong ellipticity condition" target="_blank">Google Scholar |
[5] | M. E. Gurtin, The Linear Theory of Elasticity in: Handbuch der Physik, Springer, Berlin, 1972. |
[6] | D. Han, H. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 2009, 97, 1–13. doi: 10.1007/s10659-009-9205-5 |
[7] | R. Horn and C. Johnson, Topics in Matrix Analysis, Cambrige University press, 1994. |
[8] |
J. He, G. Xu and Y. Liu, Some inequalities for the minimum $M$-eigenvalue of elasticity $M$-tensors, J. Ind. Manag. Optim., 2020, 16(6), 3035–3045. doi: 10.3934/jimo.2019092
CrossRef $M$-eigenvalue of elasticity |
[9] | J. He, Y. Wei and C. Li, $M$-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity, Appl. Math. Lett., 2020, 106137. |
[10] | Z. Huang and L. Qi, Positive definiteness of paired symmetric tensors and elasticity tensors, J. Comput. Appl. Math., 2018, 388, 22–43. |
[11] |
S. Li, C. Li and Y. Li, $M$-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor, J. Comput. Appl. Math., 2019, 356, 391–401. doi: 10.1016/j.cam.2019.01.013
CrossRef $M$-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor" target="_blank">Google Scholar |
[12] |
S. Li, Z. Chen, Q. Liu and L. Lu, Bounds of $M$-eigenvalues and strong ellipticity conditions for elasticity tensors, Linear Multilinear Algebra., 2021. |
[13] | C. Ling, J. Nie, L. Qi and Y. Ye, Bi-quadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Matrix Anal. Appl., 2009, 20(3), 1286–1310. |
[14] | C. Padovani, Strong ellipticity of transversely isotropic elasticity tensors, Meccanica, 2002, 37, 515–525. doi: 10.1023/A:1020946506754 |
[15] | L. Qi, H. Dai and D. Han, Conditions for strong ellipticity and $M$-eigenvalues, Front. Math. China, 2009, 4, 349–364. doi: 10.1007/s11464-009-0016-6 |
[16] | L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017. |
[17] |
C. Sang, A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algorithms, 2019, 32, 781–794.
$Z$-eigenvalue inclusion set for tensors" target="_blank">Google Scholar |
[18] | J. R. Walton and J. P. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Non-Linear Mech., 2003, 38, 44–455. |
[19] |
G. Wang, G. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22, 187–198.
$Z$-eigenvalue inclusion theorems for tensors" target="_blank">Google Scholar |
[20] | G. Wang, L. Sun and L. Liu, $M$-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors, Complexity, 2020, 2474278. |
[21] | G. Wang, L. Sun and X. Wang, Sharp bounds on the minimum $M$-eigenvalue of elasticity $Z$-tensors and identifying strong ellipticity, J. Appl. Anal. Comput., 2021, 11(4), 2114–2130. |
[22] | G. Wang, Y. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear Multilinear Algebra., 2020, 68(9), 1817–1834. doi: 10.1080/03081087.2018.1561823 |
[23] | K. Wang, J. Cao and H. Pei, Robust extreme learning machine in the presence of outliers by iterative reweighted algorithm, Appl. Math. Comput., 2020, 377, 125186. |
[24] |
Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest $M$-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 2009, 16, 589–601. doi: 10.1002/nla.633
CrossRef $M$-eigenvalue of a fourth-order partially symmetric tensor" target="_blank">Google Scholar |
[25] |
L. Zhang, L. Qi and G. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 2014, 35, 437–452.
$M$-tensors and some applications" target="_blank">Google Scholar |
[26] | G. Zhou, G. Wang, L. Qi and A. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra Appl., 2018, 25(2), e2134. doi: 10.1002/nla.2134 |
[27] | W. Zou, Q. He and M. Huang, Eshelby's problem of non-elliptical inclusions, J. Mech. Phys. Solids, 2010, 58(3), 346–372. |
[28] | L. Zubov and A. Rudev, On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials, Z. Angew. Math. Mech., 2016, 96, 1096–1102. |