2022 Volume 12 Issue 5
Article Contents

Mohamed Ch-Chaoui, Karima Mokni. ASYMPTOTIC ANALYSIS OF AN INTEGRO-DIFFERENTIAL SYSTEM MODELING THE BLOW UP OF CANCER CELLS UNDER THE IMMUNE RESPONSE[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1763-1785. doi: 10.11948/20210296
Citation: Mohamed Ch-Chaoui, Karima Mokni. ASYMPTOTIC ANALYSIS OF AN INTEGRO-DIFFERENTIAL SYSTEM MODELING THE BLOW UP OF CANCER CELLS UNDER THE IMMUNE RESPONSE[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1763-1785. doi: 10.11948/20210296

ASYMPTOTIC ANALYSIS OF AN INTEGRO-DIFFERENTIAL SYSTEM MODELING THE BLOW UP OF CANCER CELLS UNDER THE IMMUNE RESPONSE

  • In this paper, we derive and analyze a phenomenological model at the cellular level of the immune response to cancer evolution based on the kinetic theory of active particles. The model consists of a system of nonlinear integro-differential equations describing the binary interactions between epithelial, tumor, naive immune cells, and activated immune cells. It also takes into account the phenotypic mutations in the epithelial and immune cells, which are known to result in the uncontrolled growth of tumor cells. We prove the well-posedness of the related Cauchy problem and the non-negativity of the solution. We give sufficient conditions for which the solution may exist globally in time. A detailed asymptotic analysis has been developed with the aim of predicting the effect of mutation events on the tumor-immune dynamics. The analysis shows that under some critical values of the model's parameters and initial conditions, we can specify some biological states of the blow up of tumor cells. Indeed, the analysis gives useful indications to be properly explored toward the design of therapeutical actions.

    MSC: 93A30, 34D05, 81T80
  • 加载中
  • [1] A. K. Abbas and A. H. Lichtman, Basic Immunology. In: Functions and Disorders of the Immune System, Elsevier, Philadelphia, 2004.

    Google Scholar

    [2] J. A. Adam and N. Bellomo, A survey of models for tumor-immune system dynamics, Springer Science & Business Media, 2012.

    Google Scholar

    [3] B. Allen and M. Nowak, Games on Graphs, Eur. Math. Soc. Surveys in Math. Sci., 2014, 1, 113–151. doi: 10.4171/EMSS/3

    CrossRef Google Scholar

    [4] P. M. Altrock, L. Liu and F. Michor, The Mathematics Of Cancer: Integrating Quantitative Models, Nature Review Cancer, 2015, 12, 15, 730-745.

    Google Scholar

    [5] L. Afraites, A. Atlas, A. Bellouquid and M. Ch-Chaoui, Modelling the complex immune system response to cancer cells, Mathematics in Engineering, Science and Aerospace, 2012, 3(3), 269-283.

    Google Scholar

    [6] L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl. Math. Letters, 2012, 25, 490-495. doi: 10.1016/j.aml.2011.09.043

    CrossRef Google Scholar

    [7] B. Aylaj, Qualitative analysis and simulation of a nonlinear integro-differential system modeling tumor-immune cells competition, International Journal of Biomathematics, 2018, 11(08), 1850104. DOI: https://doi.org/10.1142/S1793524518501048.

    CrossRef Google Scholar

    [8] N. Bellomo, A. Elaiw, A. M. Althiabi and M. A. Alghamdi, Mathematics toward systems biology and complexity, Physics of Life Reviews, 2015, 12, 85-90. doi: 10.1016/j.plrev.2015.02.006

    CrossRef Google Scholar

    [9] N. Bellomo, L. Preziosi and G. Forni, A kinetic (cellular) theory for competition between tumors and the host immune system, J. Biol. Sys., 1996, 4, 497-502.

    Google Scholar

    [10] A. Bellouquid and M. Delitala, Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, Birkäuser, Boston, 2006.

    Google Scholar

    [11] N. Bellomo, A. Bellouquid and M. Delitala, Mathematical Topics on the Modelling Complex Multicellular Systems and Tumor Immune Cells Competition, Mathematical Models and Methods in Applied Sciences, 2004, 14, 1683-1733. doi: 10.1142/S0218202504003799

    CrossRef Google Scholar

    [12] N. Bellomo and M. Delitala, From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Physics of Life Reviews, 2008, 5, 183-206. doi: 10.1016/j.plrev.2008.07.001

    CrossRef Google Scholar

    [13] N. Bellomo, Nonlinear models and problems in applied sciences from differential quadrature to generalized collocation methods, Math. Comp. Modelling, 1997, 26, 13-34.

    Google Scholar

    [14] A. Bellouquid and M. CH-Chaoui, Asymptotic analysis of a nonlinear integro-differential system modeling the immune response, Comput. Math. Appl., 2014, 68, 905-914. DOI: https://doi.org/10.1016/j.camwa.2014.05.018.

    Google Scholar

    [15] C. Bianca and M. Delitala, On the modelling of genetic mutations and immune system competition, Comput. Math. Appl., 2011, 61, 2362-2375. doi: 10.1016/j.camwa.2011.01.024

    CrossRef Google Scholar

    [16] A. Bellouquid, E. De Angelis and D. Knopoff, From the modeling of the immune hallmarks of cancer to a black swan in biology, Math. Models Methods Appl. Sci., 2013, 23 949-978. doi: 10.1142/S0218202512500650

    CrossRef Google Scholar

    [17] B. Cal, B. Molon and A. Viola, Tuning cancer fate: the unremitting role of host immunity, Open Biology, 2017, 7(4), 170006. doi: 10.1098/rsob.170006

    CrossRef Google Scholar

    [18] F. Cavallo, C. De Giovanni, P. Nanni, G. Forni and P. L. Lollini, 2011: the immune hallmarks of cancer, Cancer Immunol. Immunother, 2011, 60, 319-326. doi: 10.1007/s00262-010-0968-0

    CrossRef Google Scholar

    [19] E. L. Cooper, Evolution of immune system from self/not self to danger to artificial immune system, Physics of Life Reviews, 2010, 7, 55-78. doi: 10.1016/j.plrev.2009.12.001

    CrossRef Google Scholar

    [20] M. Ch-Chaoui, A. Eladdadi and K. Mokni, Activation of the immune response by cytokines and its effect on tumour cells: a mathematical model, Letters in Biomathematics, 2018, 5, 1-23. DOI: DOI:10.1080/23737867.2018.1468725.

    Google Scholar

    [21] J. Deguine et al., Intravital imaging reveals distinct dynamics for natural killer and $CD8^{+} $ T cells during tumor regression, Immunity, 2010, 33, 632. doi: 10.1016/j.immuni.2010.09.016

    CrossRef $CD8^{+} $ T cells during tumor regression" target="_blank">Google Scholar

    [22] E. De Angelis, On the Mathematical Theory of Post-Darwinian Mutations, Selection, and Evolution, Mathematical Models and Methods in Applied Sciences, 2014, 24(13), 2723-2742. DOI: https://doi.org/10.1142/S0218202514500353.

    CrossRef Google Scholar

    [23] R. Eftimie and G. Eftimie, Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics, Letters in Biomathematics, 2018, 5(2), S6-S35. DOI: https://doi.org/10.1080/23737867.2018.1430518.

    CrossRef Google Scholar

    [24] A. Eladdadi, L. de Pillis and K. Peter, Modelling tumour-immune Dynamics, Disease Progression and Treatment, Letters in Biomathematics, 2018, 5(2), S1-S5. DOI: https://doi.org/10.1080/23737867.2018.1483003.

    Google Scholar

    [25] R. Eftimie, J. J Gillard and D. A Cantrell, Mathematical Models for Immunology: Current State of the Art and Future Research Directions, Bull. Math. Biol., 2016, 78, 2091-2134. doi: 10.1007/s11538-016-0214-9

    CrossRef Google Scholar

    [26] O. J. Finn, Immuno-oncology: understanding the function and dysfunction of the immune system in cancer, Annals of Oncology, 2012, 23, 6-9.

    Google Scholar

    [27] H. Gintis, Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction, Princeton University Press, 2009.

    Google Scholar

    [28] F. G. Giancotti, Deregulation of cell signaling in cancer, FEBS Letters, 2014, 588(16), 2558-2570. doi: 10.1016/j.febslet.2014.02.005

    CrossRef Google Scholar

    [29] D. Hanahan and L. M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell, 2012, 21(3), 309-322. doi: 10.1016/j.ccr.2012.02.022

    CrossRef Google Scholar

    [30] B. Jeremy Swann and M. J. Smyth, Immune surveillance of tumors, J. Clin. Invest., 2007, 117(5), 1137-1146. doi: 10.1172/JCI31405

    CrossRef Google Scholar

    [31] R. Kim, K. Emi and K. Tanabe, Cancer immunoediting from immune surveillance to immune escape, Immunology, 2007, 121(1), 1-14. doi: 10.1111/j.1365-2567.2007.02587.x

    CrossRef Google Scholar

    [32] N. Kedia-Mehta and D. K Finlay, Competition for nutrients and its role in controlling immune responses, Nat. Commun., 2019, 10, 2123. doi: 10.1038/s41467-019-10015-4

    CrossRef Google Scholar

    [33] J. Liu and X. Cao, Cellular and molecular regulation of innate inflammatory responses, Cell Mol. Immunol., 2016, 13, 711-721. doi: 10.1038/cmi.2016.58

    CrossRef Google Scholar

    [34] K. J. Mahasa, R. Ouifki, A. Eladdadi and L. de Pillis, A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept, Mathematical Biosciences and Engineering, 2022, 19(5), 4429-4457. doi: 10.3934/mbe.2022205

    CrossRef Google Scholar

    [35] A. Niida, K. Mimori, T. Shibata et al., Modeling colorectal cancer evolution, J. Hum. Genet., 2021, 66, 869-878. DOI: https://doi.org/10.1038/s10038-021-00930-0.

    CrossRef Google Scholar

    [36] E. Piretto, M. Delitala and M. Ferraro, Efficiency of cancer treatments: in silico experiments, Math. Model. Nat. Phenom., 2020, 15-19. DOI: https://doi.org/10.1051/mmnp/2019031.

    Google Scholar

    [37] R. D. Schreiber, R. J. Old Lloyed and J. Smyth Mark, Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion, Science, 2011, 331, 1565. doi: 10.1126/science.1203486

    CrossRef Google Scholar

    [38] N. S. Senekal, K. J. Mahasa, A. Eladdadi et al., Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model, Bull. Math. Biol., 2021, 83, 75. DOI: https://doi.org/10.1007/s11538-021-00903-6.

    Google Scholar

    [39] A. Shabir, U. Aman, A. Ali and B. Dumitru, Theoretical and numerical analysis of fractal fractional model of tumor-immune interaction with two different kernels, Alexandria Engineering Journal, 2022, 61(7), 5735-5752. DOI: https://doi.org/10.1016/j.aej.2021.10.065.

    CrossRef Google Scholar

    [40] A. Shabir, U. Aman, A. Thabet, A. Ali and M. Nabil, Analysis of fractal-fractional model of tumor-immune interaction, Results in Physics, 2021, 25, 104178. DOI: https://doi.org/10.1016/j.rinp.2021.104178.

    CrossRef Google Scholar

    [41] A. Schmidt, N. Oberle and P. H. Krammer, Molecular mechanisms of treg-mediated T cell suppression, Front. Immunol., 2012, 2012(3), 51.

    Google Scholar

    [42] R. A. Weinberg, The Biology of Cancer, Garland Sciences-Taylor and Francis, 2007.

    Google Scholar

    [43] J. A. Wargo, S. M. Reddy, A. Reuben and P. Sharma, Monitoring immune responses in the tumor microenvironment, Current opinion in immunology, 2016, 41, 23-31.

    Google Scholar

    [44] T. L. Whiteside, Immune responses to malignancies, The Journal of allergy and clinical immunology, 2010, 125(2), S272-S283.

    Google Scholar

    [45] B. F. Zamarron and W. Chen, Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression, International Journal of Biological Scienc, 2011, 7(5), 651-658.

    Google Scholar

Figures(5)  /  Tables(1)

Article Metrics

Article views(2872) PDF downloads(389) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint