2022 Volume 12 Issue 2
Article Contents

Xiujuan Dong, Xue Yang. AFFINE-PERIODIC SOLUTIONS FOR PERTURBED SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 754-769. doi: 10.11948/20210309
Citation: Xiujuan Dong, Xue Yang. AFFINE-PERIODIC SOLUTIONS FOR PERTURBED SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 754-769. doi: 10.11948/20210309

AFFINE-PERIODIC SOLUTIONS FOR PERTURBED SYSTEMS

  • In this paper, we try to study the existence and uniqueness of affine-periodic solutions for the perturbed affine-periodic system. We prove that, under certain conditions, if the coefficient of the forced term is sufficiently small, then the system admits affine-periodic solutions which have the form of $z(t+T,\mu)=Qz(t,\mu)$ with some nonsingular matrix Q. Depending on the structure of Q, they may be periodic, anti-periodic, quasi-periodic or even unbounded spiral motions. The main tools we used are the theory of exponential dichotomy and Banach contraction mapping principle.

    MSC: 34C25, 34C27
  • 加载中
  • [1] X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dynam. Systems, 2016, 36(2), 643-652.

    Google Scholar

    [2] C. Cheng, F. Huang and Y. Li, Affine-periodic Solutions and pseudo affine-periodic solutions for differential equations with exponential dichotomy and exponential trichotomy, J. Appl. Anal. Comput., 2016, 6(4), 950-967.

    Google Scholar

    [3] S. N. Chow and H. Leiva, Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces, Proc. Amer. Math. Soc., 1996, 124(4), 1071-1081. doi: 10.1090/S0002-9939-96-03433-8

    CrossRef Google Scholar

    [4] W. A. Coppel, Dichotomies in Stability Theory, Springer, Berlin Heidelberg, 1978.

    Google Scholar

    [5] J. Du, X. Yang and S. Wang, Pseudo affine-periodic solutions for delay differential systems, Qual. Theory Dyn. Syst., 2021, 20(60).

    Google Scholar

    [6] J. K. Hale, Ordinary Differential Equations, Amer. Math. Monthly, 1969, 23(10), 82-122.

    Google Scholar

    [7] Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Advanced Nonlinear Studies, 2015, 15(1), 241-252. doi: 10.1515/ans-2015-0113

    CrossRef Google Scholar

    [8] Y. Li, H. Wang and X. Yang, Fink type conjecture on affine-periodic solutions and levinson's conjecture to newtonian systems, Discrete Contin. Dynam. Systems, 2018, 23(6), 2607-2623. doi: 10.3934/dcdsb.2018123

    CrossRef Google Scholar

    [9] X. Lin, Exponential dichotomies and homoclinic orbits in functional differential equations, J. Differential Equations, 1986, 63(2), 227-254. doi: 10.1016/0022-0396(86)90048-3

    CrossRef Google Scholar

    [10] G. Liu, Y. Li and X. Yang, Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity, Math. Methods Appl. Sci., 2017, 40(18), 7139-7150. doi: 10.1002/mma.4518

    CrossRef Google Scholar

    [11] G. Liu, Y. Li and X. Yang, Existence and multiplicity of rotating periodic solutions for resonant Hamiltonian systems, J. Differential Equations, 2018, 265(4), 1324-1352. doi: 10.1016/j.jde.2018.04.001

    CrossRef Google Scholar

    [12] K. J. Palmer, Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations, J. Differential Equations, 1982, 46(3), 324-345. doi: 10.1016/0022-0396(82)90098-5

    CrossRef Google Scholar

    [13] K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 1984, 55(2), 225-256. doi: 10.1016/0022-0396(84)90082-2

    CrossRef Google Scholar

    [14] C. Wang, X. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math., 2016, 46(5), 1717-1737.

    Google Scholar

    [15] H. Wang, X. Yang and Y. Li, LaSalle type stationary oscillation theorems for affine-periodic systems, Discrete Contin. Dynam. Systems, 2017, 22(7), 2907-2921. doi: 10.3934/dcdsb.2017156

    CrossRef Google Scholar

    [16] J. Xing, X. Yang and Y. Li, Affine-periodic solutions by averaging methods, Science China, 2018, 61(3), 1-14.

    Google Scholar

    [17] F. Xu and X. Yang, Affine-periodic solutions for higher order differential equations, Appl. Math. Lett., 2020, DOI: 10.1016/j.aml.2020.106341.

    CrossRef Google Scholar

    [18] Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal., 2013, 2013(1), 189-206.

    Google Scholar

Article Metrics

Article views(2413) PDF downloads(488) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint