Citation: | Xiujuan Dong, Xue Yang. AFFINE-PERIODIC SOLUTIONS FOR PERTURBED SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 754-769. doi: 10.11948/20210309 |
In this paper, we try to study the existence and uniqueness of affine-periodic solutions for the perturbed affine-periodic system. We prove that, under certain conditions, if the coefficient of the forced term is sufficiently small, then the system admits affine-periodic solutions which have the form of $z(t+T,\mu)=Qz(t,\mu)$ with some nonsingular matrix Q. Depending on the structure of Q, they may be periodic, anti-periodic, quasi-periodic or even unbounded spiral motions. The main tools we used are the theory of exponential dichotomy and Banach contraction mapping principle.
[1] | X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dynam. Systems, 2016, 36(2), 643-652. |
[2] | C. Cheng, F. Huang and Y. Li, Affine-periodic Solutions and pseudo affine-periodic solutions for differential equations with exponential dichotomy and exponential trichotomy, J. Appl. Anal. Comput., 2016, 6(4), 950-967. |
[3] | S. N. Chow and H. Leiva, Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces, Proc. Amer. Math. Soc., 1996, 124(4), 1071-1081. doi: 10.1090/S0002-9939-96-03433-8 |
[4] | W. A. Coppel, Dichotomies in Stability Theory, Springer, Berlin Heidelberg, 1978. |
[5] | J. Du, X. Yang and S. Wang, Pseudo affine-periodic solutions for delay differential systems, Qual. Theory Dyn. Syst., 2021, 20(60). |
[6] | J. K. Hale, Ordinary Differential Equations, Amer. Math. Monthly, 1969, 23(10), 82-122. |
[7] | Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Advanced Nonlinear Studies, 2015, 15(1), 241-252. doi: 10.1515/ans-2015-0113 |
[8] | Y. Li, H. Wang and X. Yang, Fink type conjecture on affine-periodic solutions and levinson's conjecture to newtonian systems, Discrete Contin. Dynam. Systems, 2018, 23(6), 2607-2623. doi: 10.3934/dcdsb.2018123 |
[9] | X. Lin, Exponential dichotomies and homoclinic orbits in functional differential equations, J. Differential Equations, 1986, 63(2), 227-254. doi: 10.1016/0022-0396(86)90048-3 |
[10] | G. Liu, Y. Li and X. Yang, Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity, Math. Methods Appl. Sci., 2017, 40(18), 7139-7150. doi: 10.1002/mma.4518 |
[11] | G. Liu, Y. Li and X. Yang, Existence and multiplicity of rotating periodic solutions for resonant Hamiltonian systems, J. Differential Equations, 2018, 265(4), 1324-1352. doi: 10.1016/j.jde.2018.04.001 |
[12] | K. J. Palmer, Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations, J. Differential Equations, 1982, 46(3), 324-345. doi: 10.1016/0022-0396(82)90098-5 |
[13] | K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 1984, 55(2), 225-256. doi: 10.1016/0022-0396(84)90082-2 |
[14] | C. Wang, X. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math., 2016, 46(5), 1717-1737. |
[15] | H. Wang, X. Yang and Y. Li, LaSalle type stationary oscillation theorems for affine-periodic systems, Discrete Contin. Dynam. Systems, 2017, 22(7), 2907-2921. doi: 10.3934/dcdsb.2017156 |
[16] | J. Xing, X. Yang and Y. Li, Affine-periodic solutions by averaging methods, Science China, 2018, 61(3), 1-14. |
[17] | F. Xu and X. Yang, Affine-periodic solutions for higher order differential equations, Appl. Math. Lett., 2020, DOI: 10.1016/j.aml.2020.106341. |
[18] | Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal., 2013, 2013(1), 189-206. |