Citation: | Xiaoling Han, Hujun Yang. EXISTENCE OF PERIODIC SOLUTIONS FOR TWO CLASSES OF SECOND ORDER $ P $-LAPLACIAN DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 81-94. doi: 10.11948/20210310 |
In this paper, by using the Man$ \acute{a} $sevich-Mawhin theorem on continuity of the topological degree, we prove the existence of periodic solutions for two classes of second order $ p $-Laplacian polynomial differential equations. Finally, some examples are given to show applications of the conclusions.
[1] | B. Adriana and G. Armengol, Many periodic solutions for a second order cubic periodic differential equation, Monatsh. Math., 2020, 193(3), 555–572. doi: 10.1007/s00605-020-01433-4 |
[2] | A. L. A. Araujo, Periodic solutions for a nonautonomous ordinary differential equation, Nonlinear Anal., 2012, 75(5), 2897–2903. doi: 10.1016/j.na.2011.11.032 |
[3] | A. L. A. Araujo and K. M. Pedroso, Multiple periodic solutions and positive homoclinic solution for a differential equation, Bull. Belg. Math. Soc. Simon Stevin., 2013, 20(3), 535–546. |
[4] | V. Barutello, R. Ortega and G. Verzini, Regularized variational principles for the perturbed Kepler problem, Adv. Math., 2021, 383, 1–64. |
[5] | J. A. Cid, G. Infante, M. Tvrd'f, et al., New results for the Liebau phenomenon via fixed point index, Nonlinear Anal. Real World Appl., 2017, 35, 457–469. doi: 10.1016/j.nonrwa.2016.11.009 |
[6] | J. A. Cid, G. Infante, M. Tvrd'f, et al., A topological approach to periodic oscillations related to the Liebau phenomenon, J. Math. Anal. Appl., 2015, 423(2), 1546–1556. doi: 10.1016/j.jmaa.2014.10.054 |
[7] | J. A. Cid, J. Mawhin and M. Zima, An abstract averaging method with applications to differential equations, J. Differential Equations, 2021, 274, 231–250. doi: 10.1016/j.jde.2020.11.051 |
[8] | J. A. Cid and L. Sanchez, Nonnegative oscillations for a class of differential equations without uniqueness: a variational approach, Discrete Contin. Dyn. Syst. Ser. B., 2020, 25(2), 545–554. |
[9] | J. Chu, P. J. Torres and F. Wang, Twist periodic solutions for differential equations with a combined attractive-repulsive singularity, J. Math. Appl. Anal., 2016, 437(2), 1070–1083. doi: 10.1016/j.jmaa.2016.01.057 |
[10] | G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 2017, 262(8), 4255–4291. doi: 10.1016/j.jde.2017.01.009 |
[11] | M. R. Grossinho and L. Sanchez, A note on periodic solutions of some nonautonomous differential equations, Bull. Austral. Math. Soc., 1986, 34(2), 253–265. doi: 10.1017/S000497270001011X |
[12] | M. R. Grossinho, L. Sanchez and S. A. Tersian, Periodic solutions for a class of second order differential equations, Heron Press, Sofia, 1999. |
[13] | M. R. Grossinho, L. Sanchez and S. Tersian, Positive homoclinic solutions for a class of second order differential equations, J. Math. Appl. Anal., 1999, 240(1), 163–173. doi: 10.1006/jmaa.1999.6606 |
[14] | R. Hakl and P. J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differential Equations, 2010, 248(1), 111–126. doi: 10.1016/j.jde.2009.07.008 |
[15] | X. Han and H. Yang, Existence and multiplicity of periodic solutions for a class of second-order ordinary differential equations, Monatsh. Math., 2020, 193(4), 829–843. doi: 10.1007/s00605-020-01465-w |
[16] | A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 1987, 99(1), 109–114. doi: 10.1090/S0002-9939-1987-0866438-7 |
[17] | F. Liao, Periodic solutions of Liebau-type differential equations, Appl. Math. Lett., 2017, 69, 8–14. doi: 10.1016/j.aml.2017.02.001 |
[18] | G. Liebau, Über ein ventilloses Pumpprinzip, Naturwissenschaften, 1954, 41(14), 327–327. |
[19] | A. Lomtatidze and J. Šremr, On periodic solutions to second-order Duffing type equations, Nonlinear Anal. Real World Appl., 2018, 40, 215–242. doi: 10.1016/j.nonrwa.2017.09.001 |
[20] |
S. Lu, Z. Tao and L. Chen, Periodic solutions for $p$-Laplacian Rayleigh equations with singularities, Bound. Value Probl., 2016, 16, 1–12.
$p$-Laplacian Rayleigh equations with singularities" target="_blank">Google Scholar |
[21] |
S. Lu, Z. Tao and Y. Gao, Periodic solutions of $p$-Laplacian equations with singularities, Adv. Difference Equ., 2016, 146, 1–12.
$p$-Laplacian equations with singularities" target="_blank">Google Scholar |
[22] |
R. Man$\acute{a}$sevich and J. Mawhin, Periodic solutions for nonlinear systems with $p$-Laplacian-like operators, J. Differential Equations, 1998, 145(2), 367–393. doi: 10.1006/jdeq.1998.3425
CrossRef $p$-Laplacian-like operators" target="_blank">Google Scholar |
[23] | G. Propst, Pumping effects in models of periodically forced flow configurations, Phys. D, 2006, 217(2), 193–201. doi: 10.1016/j.physd.2006.04.007 |
[24] | C. Rebelo and A. Simöes, Periodic linear motions with multiple collisions in a forced Kepler type problem, Discrete Contin. Dyn. Syst., 2018, 38(8), 3955–3975. doi: 10.3934/dcds.2018172 |
[25] | J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system, Discrete Contin. Dyn. Syst. B, 2011, 16(1), 385–392. |
[26] | F. Wang, J. A. Cid, S. Li, et al., Lyapunov stability of periodic solutions of Brillouin type equations, Appl. Math. Lett., 2020, 101, 106057. doi: 10.1016/j.aml.2019.106057 |
[27] | F. Wang, J. A. Cid and M. Zima, Lyapunov stability for regular equations and applications to the Liebau phenomenon, Discrete Contin. Dyn. Syst., 2020, 38(9), 4657–4674. |
[28] |
Y. Xin and H. Liu, Singularities of attractive and repulsive type for $p$-Laplacian generalized LišŠnard equation, Adv. Difference Equ., 2018, 471, 1–21.
$p$-Laplacian generalized LišŠnard equation" target="_blank">Google Scholar |
[29] | L. Zhao, Some collision solutions of the rectilinear periodically forced Kepler problem, Adv. Nonlinear Stud., 2016, 16(1), 45–49. doi: 10.1515/ans-2015-5021 |