2022 Volume 12 Issue 4
Article Contents

Qiuyan Zhang. BIFURCATIONS AND EXACT SOLUTIONS OF THE OPTICAL SOLITON MODEL IN METAMATERIALS DOMINATED BY ANTI-CUBIC NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1517-1531. doi: 10.11948/20210317
Citation: Qiuyan Zhang. BIFURCATIONS AND EXACT SOLUTIONS OF THE OPTICAL SOLITON MODEL IN METAMATERIALS DOMINATED BY ANTI-CUBIC NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1517-1531. doi: 10.11948/20210317

BIFURCATIONS AND EXACT SOLUTIONS OF THE OPTICAL SOLITON MODEL IN METAMATERIALS DOMINATED BY ANTI-CUBIC NONLINEARITY

  • Corresponding author: Email address: zqy1607@cuit.edu.cn(Q. Zhang)
  • Fund Project: The author was supported by National Natural Science Foundation of China(12101090) and Sichuan Science and Technology Program (2021ZYD0009)
  • Optical soliton model in metamaterials, dominanted by anti-cubic nonlinearity, is investigated by the method of dynamical systems. By using travelling wave transformation, the model can be converted into a singular integrable travelling wave system. Then we discuss the dynamical behavior of the associated regular system. Further, all bounded exact solutions of the model can be calculated because of its integrability. Finally, twenty exact explicit parametric representations are derived.

    MSC: 34C23, 34C25, 34C37, 74J30
  • 加载中
  • [1] S. S. Afzal, M. Younis and S. T. R. Rizvi, Optical dark and dark-singular solitons with anti-cubic nonlinearity, Optik, 2017, 147, 27–31. doi: 10.1016/j.ijleo.2017.08.067

    CrossRef Google Scholar

    [2] K. S. Al-Ghafri1 and E. V. Krishnan, Optical solitons in metamaterials dominated by anti-cubic nonlinearity and Hamiltonian perturbations, Int. J. Appl. Comput. Math., 2020, 6(5), 144. doi: 10.1007/s40819-020-00896-1

    CrossRef Google Scholar

    [3] A. H. Arnous, M. Ekici, S. P. Moshokoa et al, Solitons in nonlinear directional couplers with optical metamaterials by trial function scheme, Acta Phys. Polonica A., 2017, 132(4), 1399–1410. doi: 10.12693/APhysPolA.132.1399

    CrossRef Google Scholar

    [4] A. Biswas, R. Kaisar, K. R. Khan et al, Bright and dark solitons in optical metamaterials, Optik, 125(13), 3299–3302.

    Google Scholar

    [5] A. Biswas, A. Mirzazadeh, M. Savescu et al, Singular solitons in optical metamaterials by ansatz method and simplest equation approach, J. of Modern Optics, 2014, 61(19), 1550–1555. doi: 10.1080/09500340.2014.944357

    CrossRef Google Scholar

    [6] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Springer, Berlin, 1971.

    Google Scholar

    [7] M. Ekici, A. Sonmezoglu, Q. Zhou et al, Analysis of optical solitons in nonlinear negative-indexed materials with anti-cubic nonlinearity, Opt. Quantum Electron., 2018, 50(2), 75. doi: 10.1007/s11082-018-1341-3

    CrossRef Google Scholar

    [8] M. Foroutan, J. Manafian and A. Ranjbaran, Solitons in optical metamaterials with anti-cubic law of nonlinearity by generalized GG' -expansion method, Optik, 2018, 162, 86–94. doi: 10.1016/j.ijleo.2018.02.087

    CrossRef Google Scholar

    [9] M. Foroutan, J. Manafian and I. Zamanpour, Solitonwave solutions in optical metamaterials with anti-cubic law of nonlinearity by ITEM, Optik, 2018, 164, 371–379. doi: 10.1016/j.ijleo.2018.03.025

    CrossRef Google Scholar

    [10] Y. Fu and J. Li, Exact stationary-wave solutions in the standard model of the Kerr-nonlinear optical fiber with the bragg grating, J. Appl. Anal, Comput., 2017, 7(3), 1177–1184.

    Google Scholar

    [11] A. A. Kader, M. A. Latif and Q. Zhou, Exact optical solitons in metamaterials with anti-cubic law of nonlinearity by Lie group method, Opt. Quantum Electron, 2019, 51(1), 30. doi: 10.1007/s11082-019-1748-5

    CrossRef Google Scholar

    [12] J. Li, Geometric properties and exact travelling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonl. Mod. Anal., 2019, 1(1), 1–10.

    Google Scholar

    [13] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [14] J. Li and G. Chen, Bifurcations of travelling wave solutions for four classes of nonlinear wave equations, Int. J. Bifurcat. Chaos, 2005, 15(12), 3973–3998. doi: 10.1142/S0218127405014416

    CrossRef Google Scholar

    [15] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcat. Chaos, 2007, 17(11), 4049–4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [16] J. Li and M. Han, Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations, J. Appl. Anal, Comput., 2020, 10(4), 1708–1719.

    Google Scholar

    [17] J. Li, Y. Zhang and X. Zhao, On a class of singular nonlinear traveling wave equations (Ⅱ): an example of GCKdV equations, Int. J. Bifurcat. Chaos, 2009, 19(6), 1955–2007.

    Google Scholar

    [18] J. Li, W. Zhou, and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifurcat. Chaos, 2016, 26(12), 1650207. doi: 10.1142/S0218127416502072

    CrossRef Google Scholar

    [19] A. Sonmezoglu, M. Yao, M. Ekici et al, Explicit solitons in the parabolic law nonlinear negative-index materials, Nonlinear Dynam., 2016, 88(1), 1–13.

    Google Scholar

    [20] Y. Xiang, X. Dai, S. Wen et al, Controllable Raman soliton self-frequency shift in nonlinear metamaterials, Phys. Rev. A, 2011, 84(3), 2484–2494.

    Google Scholar

    [21] Y. Xu, P. Pablo Suarez, D. Milovic et al, Raman solitons in nanoscale optical waveguides, with metamaterials, having polynomial law non-linearity, J. Mod. Optic., 2016, 63(S3), S32–S37.

    Google Scholar

    [22] Y. Zhou and J. Li, Exact solutions and dynamics of the Raman soliton model in nanoscale optical waveguides, with metamaterials, having polynomial law nonlinearity, Int. J. Bifurcat. Chaos, 2017, 27(12), 1750188. doi: 10.1142/S0218127417501887

    CrossRef Google Scholar

    [23] Q. Zhou, L. Liu, Y. Liu et al, Exact optical solitons in metamaterials with cubicšCquintic nonlinearity and third-order dispersion, Nonlinear Dynam., 2015, 80(3), 1365–1371. doi: 10.1007/s11071-015-1948-x

    CrossRef Google Scholar

    [24] Q. Zhou, M. Mirzazadeh, M. Ekici et al, Analytical study of solitons in non-Kerr nonlinear negative index materials, Nonlinear Dynam., 2015, 86(1), 623–638.

    Google Scholar

    [25] Y. Zhou and J. Zhuang, Bifurcations and exact eolutions of the Raman soliton model in nanoscale optical waveguides with metamaterials, J. Nonl. Mod. Anal., 2021, 3(1), 145–165.

    Google Scholar

Figures(6)

Article Metrics

Article views(2132) PDF downloads(340) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint