Citation: | Zhong-Xuan Mao, Jing-Feng Tian, Ya-Ru Zhu. PSI, POLYGAMMA FUNCTIONS AND Q-COMPLETE MONOTONICITY ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1137-1154. doi: 10.11948/20210340 |
In this paper, we generalize psi and polygamma functions based on the Laplace transform in the field of time scales, and explore some properties of them. Next, we present the concepts of $ q $-complete monotonicity, $ q $-logarithmically complete monotonicity and $ q $-absolute monotonicity with delta derivative on time scales. At last, we prove that the function
$ \begin{equation*} s\mapsto \alpha \psi_{\mathbb{R}_0, \mathbb{T}}(s)-\ln s+\frac{1}{2s}+\frac{1}{12s^2} \end{equation*} $
is $ 1 $-complete monotonicity on $ (0, \infty) $ if $ \mathbb{T}=\mathbb{N} $ and $ \alpha \in [\frac{3-2\sqrt{3}}{6}, \frac{3+2\sqrt{3}}{6}] $, and it is decreasing on $ (0, \infty) $ if $ \mathbb{T}=h\mathbb{N}\cup\{1\} (h\geq1) $ and $ \alpha=1 $, where $ \mathbb{R}_0=[0, \infty) $ and $ \psi_{\mathbb{R}_0, \mathbb{T}} $ is a psi function on time scales.
[1] | R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 1999, 35(1), 3–22. |
[2] | R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci., 1988, 41(2), 21–23. |
[3] | S. Bernstein, Sur les fonctions absolument monotones(French), Acta Math., 1929, 52(1), 1–66. doi: 10.1007/BF02592679 |
[4] | M. Bohner and S. G. Georgiev, Multivariable dynamic calculus on time scales, Spriner, Cham, 2016. |
[5] | M. Bohner, G. S. Guseinov and B. Karpuz, Properties of the Laplace transform on time scales with arbitrary graininess, Integral Transforms Spec. Funct., 2011, 22(11), 785–800. doi: 10.1080/10652469.2010.548335 |
[6] | M. Bohner and B. Karpuz, The gamma function on time scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2013, 20(4), 507–522. |
[7] | M. Bohner and A. Peterson, Dynamic equations on time scales, Spriner, Boston, 2001. |
[8] | M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Spriner, Boston, 2003. |
[9] | M. Bohner and A. Peterson, Laplace transform and Z-transform: unification and extension, Methods Appl. Anal., 2002, 9(1), 151–158. doi: 10.4310/MAA.2002.v9.n1.a6 |
[10] | J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comp., 1986, 47(176), 659–667, doi: 10.1090/S0025-5718-1986-0856710-6 |
[11] | S. G. Georgiev, Integral equations on time scales, Springer, New York, 2016. |
[12] | S. G. Georgiev, Fractional dynamic calculus and fractional dynamic equations on time scales, Springer, Basel, 2018. |
[13] | S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, Würzburg, Germany, 1988. |
[14] | M. E. H. Ismail, Completely monotonic functions associated with the gamma function and its $q $-analogues, J. Math. Anal. Appl., 1988, 16(1), 1–9. |
[15] | C. Lizama and J. G. Mesquita, Almost automorphic solutions of dynamic equations on time scales, J. Funct. Anal., 2013, 265(10), 2267–2311. doi: 10.1016/j.jfa.2013.06.013 |
[16] |
Z. Mao, J. Tian and Y. Zhu, Psi and Polygamma functions, q-complete monotonicity on time scales. Available at |
[17] | Z. Mao, Y. Zhu, J. Hou, et al., Multiple Diamond-Alpha integral in general form and their properties, applications, Math., 2021. DOI: 10.3390/math9101123. |
[18] | Z. Mao, Y. Zhu and J. Tian, Higher dimensions opial diamond-alpha inequalities on time scales, J. Math. Inequal., 2021, 15(3), 1055–1074. |
[19] | A. A. Martynyuk, Stability theory for dynamic equations on time scales, Spriner, Boston, 2016. |
[20] | F. Qi and R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-1976-z. |
[21] | F. Qi, R. Cui, C. Chen, et al., Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl., 2005, 310(1), 303–308. doi: 10.1016/j.jmaa.2005.02.016 |
[22] | F. Qi and B. Guo, From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions, J. Math. Anal. Appl., 2021. DOI: 10.1016/j.jmaa.2020.124478. |
[23] | F. Qi and B. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll., 2004, 7(1), 63–72. |
[24] | F. Qi, W. Li, S. Yu, et al., A ratio of finitely many gamma functions and its properties with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021. DOI: 10.1007/s13398-020-00988-z. |
[25] | F. Qi, D. Niu, D. Lim, et al., Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions, Appl. Anal. Discrete Math., 2020, 14(2), 512–527. doi: 10.2298/AADM191111033Q |
[26] | J. Shen, Z. Yang, W. Qian, et al., Sharp rational bounds for gamma function, Math. Inequal. Appl., 2020, 23(3), 843–853. |
[27] | Y. Sui and Z. Han, Oscillation of third-order nonlinear delay dynamic equation with damping term on time scales, J. Appl. Math. Comput., 2018, 58(1), 577–599. |
[28] | J. Tian, Triple Diamond-Alpha integral and Hölder-type inequalities, J. Inequal. Appl., 2018. DOI: 10.1186/s13660-018-1704-0. |
[29] | J. Tian and Z. Yang, New properties of the divided difference of psi and polygamma functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021. DOI: 10.1007/s13398-021-01084-6. |
[30] |
J. Tian and Z. Yang, Logarithmically complete monotonicity of ratios of $q $-gamma functions, J. Math. Anal. Appl., 2022. DOI: 10.1016/j.jmaa.2021.125868.
CrossRef $q $-gamma functions" target="_blank">Google Scholar |
[31] | J. Tian and Z. Yang, Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders, J. Math. Anal. Appl., 2021. DOI: 10.1016/j.jmaa.2020.124545. |
[32] | J. Tian and Z. Yang, Several absolutely monotonic functions related to the complete elliptic integral of the first kind, Results Math., 2022. DOI: 10.1007/s00025-022-01641-4. |
[33] |
J. Tian, Y. Zhu and W. Cheung, $ N$-tuple Diamond-Alpha integral and inequalities on time scales, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2019, 113(3), 2189–2200. doi: 10.1007/s13398-018-0609-6
CrossRef $ N$-tuple Diamond-Alpha integral and inequalities on time scales" target="_blank">Google Scholar |
[34] | D. V. Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, 1941. |
[35] | M. Wang, Y. Chu and Y. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math., 2016, 46(2), 679–691. |
[36] | Z. Yang and J. Tian, Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions, J. Math. Anal. Appl., 2023. DOI: 10.1016/j.jmaa.2022.126649. |
[37] | Z. Yang and J. Tian, Absolute monotonicity involving the complete elliptic integrals of the first kind with applications, Acta Math. Sci. Ser. B, 2022, 42(3), 847–864. doi: 10.1007/s10473-022-0302-x |
[38] | Z. Yang and J. Tian, Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2019, 113(4), 3603–3617. doi: 10.1007/s13398-019-00719-z |
[39] | Z. Yang and J. Tian, A comparison theorem for two divided differences and applications to special functions, J. Math. Anal. Appl., 2018, 464(1), 580–595. doi: 10.1016/j.jmaa.2018.04.024 |
[40] | Z. Yang and J. Tian, A class of completely mixed monotonic functions involving the gamma function with applications, Proc. Amer. Math. Soc., 2018, 146(11), 4707–4721. |