2023 Volume 13 Issue 3
Article Contents

Zhong-Xuan Mao, Jing-Feng Tian, Ya-Ru Zhu. PSI, POLYGAMMA FUNCTIONS AND Q-COMPLETE MONOTONICITY ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1137-1154. doi: 10.11948/20210340
Citation: Zhong-Xuan Mao, Jing-Feng Tian, Ya-Ru Zhu. PSI, POLYGAMMA FUNCTIONS AND Q-COMPLETE MONOTONICITY ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1137-1154. doi: 10.11948/20210340

PSI, POLYGAMMA FUNCTIONS AND Q-COMPLETE MONOTONICITY ON TIME SCALES

  • In this paper, we generalize psi and polygamma functions based on the Laplace transform in the field of time scales, and explore some properties of them. Next, we present the concepts of $ q $-complete monotonicity, $ q $-logarithmically complete monotonicity and $ q $-absolute monotonicity with delta derivative on time scales. At last, we prove that the function

    $ \begin{equation*} s\mapsto \alpha \psi_{\mathbb{R}_0, \mathbb{T}}(s)-\ln s+\frac{1}{2s}+\frac{1}{12s^2} \end{equation*} $

    is $ 1 $-complete monotonicity on $ (0, \infty) $ if $ \mathbb{T}=\mathbb{N} $ and $ \alpha \in [\frac{3-2\sqrt{3}}{6}, \frac{3+2\sqrt{3}}{6}] $, and it is decreasing on $ (0, \infty) $ if $ \mathbb{T}=h\mathbb{N}\cup\{1\} (h\geq1) $ and $ \alpha=1 $, where $ \mathbb{R}_0=[0, \infty) $ and $ \psi_{\mathbb{R}_0, \mathbb{T}} $ is a psi function on time scales.

    MSC: 33B15, 26A48, 26E70
  • 加载中
  • [1] R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 1999, 35(1), 3–22.

    Google Scholar

    [2] R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci., 1988, 41(2), 21–23.

    Google Scholar

    [3] S. Bernstein, Sur les fonctions absolument monotones(French), Acta Math., 1929, 52(1), 1–66. doi: 10.1007/BF02592679

    CrossRef Google Scholar

    [4] M. Bohner and S. G. Georgiev, Multivariable dynamic calculus on time scales, Spriner, Cham, 2016.

    Google Scholar

    [5] M. Bohner, G. S. Guseinov and B. Karpuz, Properties of the Laplace transform on time scales with arbitrary graininess, Integral Transforms Spec. Funct., 2011, 22(11), 785–800. doi: 10.1080/10652469.2010.548335

    CrossRef Google Scholar

    [6] M. Bohner and B. Karpuz, The gamma function on time scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2013, 20(4), 507–522.

    Google Scholar

    [7] M. Bohner and A. Peterson, Dynamic equations on time scales, Spriner, Boston, 2001.

    Google Scholar

    [8] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Spriner, Boston, 2003.

    Google Scholar

    [9] M. Bohner and A. Peterson, Laplace transform and Z-transform: unification and extension, Methods Appl. Anal., 2002, 9(1), 151–158. doi: 10.4310/MAA.2002.v9.n1.a6

    CrossRef Google Scholar

    [10] J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comp., 1986, 47(176), 659–667, doi: 10.1090/S0025-5718-1986-0856710-6

    CrossRef Google Scholar

    [11] S. G. Georgiev, Integral equations on time scales, Springer, New York, 2016.

    Google Scholar

    [12] S. G. Georgiev, Fractional dynamic calculus and fractional dynamic equations on time scales, Springer, Basel, 2018.

    Google Scholar

    [13] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, Würzburg, Germany, 1988.

    Google Scholar

    [14] M. E. H. Ismail, Completely monotonic functions associated with the gamma function and its $q $-analogues, J. Math. Anal. Appl., 1988, 16(1), 1–9.

    $q $-analogues" target="_blank">Google Scholar

    [15] C. Lizama and J. G. Mesquita, Almost automorphic solutions of dynamic equations on time scales, J. Funct. Anal., 2013, 265(10), 2267–2311. doi: 10.1016/j.jfa.2013.06.013

    CrossRef Google Scholar

    [16] Z. Mao, J. Tian and Y. Zhu, Psi and Polygamma functions, q-complete monotonicity on time scales. Available at https://www.researchgate.net/publication/354142378_PSI_AND_POLYGAMMA_FUNCTIONS_q-COMPLETE_MONOTONICITY_ON_TIME_SCALES .

    Google Scholar

    [17] Z. Mao, Y. Zhu, J. Hou, et al., Multiple Diamond-Alpha integral in general form and their properties, applications, Math., 2021. DOI: 10.3390/math9101123.

    CrossRef Google Scholar

    [18] Z. Mao, Y. Zhu and J. Tian, Higher dimensions opial diamond-alpha inequalities on time scales, J. Math. Inequal., 2021, 15(3), 1055–1074.

    Google Scholar

    [19] A. A. Martynyuk, Stability theory for dynamic equations on time scales, Spriner, Boston, 2016.

    Google Scholar

    [20] F. Qi and R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-1976-z.

    CrossRef Google Scholar

    [21] F. Qi, R. Cui, C. Chen, et al., Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl., 2005, 310(1), 303–308. doi: 10.1016/j.jmaa.2005.02.016

    CrossRef Google Scholar

    [22] F. Qi and B. Guo, From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions, J. Math. Anal. Appl., 2021. DOI: 10.1016/j.jmaa.2020.124478.

    CrossRef Google Scholar

    [23] F. Qi and B. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll., 2004, 7(1), 63–72.

    Google Scholar

    [24] F. Qi, W. Li, S. Yu, et al., A ratio of finitely many gamma functions and its properties with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021. DOI: 10.1007/s13398-020-00988-z.

    CrossRef Google Scholar

    [25] F. Qi, D. Niu, D. Lim, et al., Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions, Appl. Anal. Discrete Math., 2020, 14(2), 512–527. doi: 10.2298/AADM191111033Q

    CrossRef Google Scholar

    [26] J. Shen, Z. Yang, W. Qian, et al., Sharp rational bounds for gamma function, Math. Inequal. Appl., 2020, 23(3), 843–853.

    Google Scholar

    [27] Y. Sui and Z. Han, Oscillation of third-order nonlinear delay dynamic equation with damping term on time scales, J. Appl. Math. Comput., 2018, 58(1), 577–599.

    Google Scholar

    [28] J. Tian, Triple Diamond-Alpha integral and Hölder-type inequalities, J. Inequal. Appl., 2018. DOI: 10.1186/s13660-018-1704-0.

    CrossRef Google Scholar

    [29] J. Tian and Z. Yang, New properties of the divided difference of psi and polygamma functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021. DOI: 10.1007/s13398-021-01084-6.

    CrossRef Google Scholar

    [30] J. Tian and Z. Yang, Logarithmically complete monotonicity of ratios of $q $-gamma functions, J. Math. Anal. Appl., 2022. DOI: 10.1016/j.jmaa.2021.125868.

    CrossRef $q $-gamma functions" target="_blank">Google Scholar

    [31] J. Tian and Z. Yang, Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders, J. Math. Anal. Appl., 2021. DOI: 10.1016/j.jmaa.2020.124545.

    CrossRef Google Scholar

    [32] J. Tian and Z. Yang, Several absolutely monotonic functions related to the complete elliptic integral of the first kind, Results Math., 2022. DOI: 10.1007/s00025-022-01641-4.

    CrossRef Google Scholar

    [33] J. Tian, Y. Zhu and W. Cheung, $ N$-tuple Diamond-Alpha integral and inequalities on time scales, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2019, 113(3), 2189–2200. doi: 10.1007/s13398-018-0609-6

    CrossRef $ N$-tuple Diamond-Alpha integral and inequalities on time scales" target="_blank">Google Scholar

    [34] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, 1941.

    Google Scholar

    [35] M. Wang, Y. Chu and Y. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math., 2016, 46(2), 679–691.

    Google Scholar

    [36] Z. Yang and J. Tian, Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions, J. Math. Anal. Appl., 2023. DOI: 10.1016/j.jmaa.2022.126649.

    CrossRef Google Scholar

    [37] Z. Yang and J. Tian, Absolute monotonicity involving the complete elliptic integrals of the first kind with applications, Acta Math. Sci. Ser. B, 2022, 42(3), 847–864. doi: 10.1007/s10473-022-0302-x

    CrossRef Google Scholar

    [38] Z. Yang and J. Tian, Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2019, 113(4), 3603–3617. doi: 10.1007/s13398-019-00719-z

    CrossRef Google Scholar

    [39] Z. Yang and J. Tian, A comparison theorem for two divided differences and applications to special functions, J. Math. Anal. Appl., 2018, 464(1), 580–595. doi: 10.1016/j.jmaa.2018.04.024

    CrossRef Google Scholar

    [40] Z. Yang and J. Tian, A class of completely mixed monotonic functions involving the gamma function with applications, Proc. Amer. Math. Soc., 2018, 146(11), 4707–4721.

    Google Scholar

Article Metrics

Article views(1867) PDF downloads(412) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint