Citation: | Qigui Yang, Huoxia Liu, Xiaofang Lin. P-DISTRIBUTION ALMOST PERIODIC SOLUTIONS OF SEMI-LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH G-BROWNIAN MOTION[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2230-2267. doi: 10.11948/20210392 |
As a class of recurrence, almost periodicity has been studied in stochastic differential equations (SDEs) under the framework of linear expectation. However, in the framework of nonlinear expectation, there are few literatures on Poisson stable solutions for SDEs and (pseudo) almost periodic solutions for SDEs with exponential dichotomy. This paper is devoted to the existence and asymptotical stability of $ p $-distribution Poisson stable solutions for nonhomogeneous linear and semi-linear SDEs driven by $ G $-Brownian motion satisfying exponential stability. Moreover, some existence results of (pseudo) almost periodic solution in $ p $-distribution are established for semi-linear SDEs driven by $ G $-Brownian motion satisfying exponential dichotomy. Meanwhile, some examples are given to validate the obtained theoretical results.
[1] | L. Amerio and G. Prouse, Almost-Periodic Functions and Functional Equations, Van. Nostrand Reinhold Co., New York-Toronto, Ont-Melbourne, 1971. |
[2] | H. Bohr, Zur theorie der fastperiodischen funktionen, (German), Acta Math., 1924, 45(1), 29-127. |
[3] | H. Bohr, Zur theorie der fastperiodischen funktionen, (German) ii, Acta Math., 1925, 46(1), 101-214. |
[4] | H. Bohr, Zur theorie der fastperiodischen funktionen, (German). iii, Acta Math., 1926, 47(1), 237-281. |
[5] | J. Blot, P. Cieutat and P. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Appl. Anal., 2013, 92(3), 493-526. doi: 10.1080/00036811.2011.628941 |
[6] | S. Bochner, A new approach to almost periodicity, Pro. Nat. Acad. of Sci., 1962, 48(12), 2039-2043. doi: 10.1073/pnas.48.12.2039 |
[7] | F. Bedouhene, N. Challali, O. Mellah, P. R. Fitte and M. Smaali, Almost automorphy and various extensions for stochastic processes, J. Math. Anal. Appl., 2015, 429(2), 1113-1152. doi: 10.1016/j.jmaa.2015.04.014 |
[8] | P. H. Bezandry and T. Diagana, Existence of almost periodic solutions to some stochastic differential equations, Appl. Anal., 2007, 86(7), 819-827. doi: 10.1080/00036810701397788 |
[9] | J. Cao, Q. Yang, Z. Huang and Q. Liu, Asymptotically almost periodic solutions of stochastic functional differential equations, Appl. Math. Comput., 2011, 218(5), 1499-1511. |
[10] | J. Campos and M. Tarallo, Almost automorphic linear dynamics by Favard theory, J. Differ. Equ., 2014, 256(12), 1350-1367. |
[11] | P. Cieutat and K. Ezzinbi, Almost automorphic solutions for some evolution equations through the minimizing for some subvariant functional, applications to heat and wave equations with nonlinearities, J. Funct. Anal., 2011, 260(9), 2598-2634. doi: 10.1016/j.jfa.2011.01.002 |
[12] | T. Caraballo and D. Cheban, Almost periodic and almost automorphic solutions of linear differential equations, Discret. Contin. Dyn. Syst., 2013, 33(5), 1857-1882. doi: 10.3934/dcds.2013.33.1857 |
[13] | D. Cheban, Levitan/Bohr almost periodic and almost automorphic solutions of scalar differential equations, Dynam. Syst., 2018, 33(4), 1-25. |
[14] | D. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations, J. Dyn. Differ. Equ., 2008, 20(3), 669-697. doi: 10.1007/s10884-008-9101-x |
[15] | D. Cheban, Bohr/Levitan almost periodic and almost automorphic solutions of linear stochastic differential equations without Favard's separation condition, arXiv: 1707.08723[math. DS], 2017. |
[16] | D. Cheban and Z. Liu, Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations, J. Differ. Equ., 2020, 269(4), 3652-3685. doi: 10.1016/j.jde.2020.03.014 |
[17] | J. Cao, Q. Yang and Z. Huang, Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stochastics., 2011, 83(3), 259-275. doi: 10.1080/17442508.2010.533375 |
[18] | M. A. Diop, K. Ezzinbi and M. M. Mbaye, Existence and global attractiveness of a pseudo almost periodic solution in $p$-th mean sense for stochastic evolution equation driven by a fractional Brownian motion, Stochastics., 2015, 87(6), 1-33. |
[19] | J. Du, K. Sun and Y. Wang, Pseudo almost automorphic solutions for non-autonomous stochastic differential equations with exponential dichotomy, Commun. Math. Res., 2014, 30(2), 139-156. |
[20] | K. J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. |
[21] | A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., Springer-Verlag, Berlin-New York, 1974. |
[22] | Y. Gu, Y. Ren and R. Sakthivel, Square-mean pseudo almost automorphic mild solutions for stochastic evolution equations driven by G-Brownian motion, Stoch. Anal. Appl., 2016, 34(3), 528-545. doi: 10.1080/07362994.2016.1155159 |
[23] | M. Hu and S. Ji, Stochastic maximum principle for stochastic recursive optimal control problem under volatility ambiguity, SIAM J. Control Optim., 2016, 54(2), 918-945. doi: 10.1137/15M1037639 |
[24] | M. Hu and S. Ji, Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion, Stoch. Process Appl., 2017, 127(1), 107-134. doi: 10.1016/j.spa.2016.06.002 |
[25] | X. Li, X. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion, J. Math. Anal. Appl., 2016, 439(1), 235-255. doi: 10.1016/j.jmaa.2016.02.042 |
[26] | G. Li and Q. Yang, Convergence and asymptotical stability of numerical solutions for neutral stochastic delay differential equations driven by G-Brownian motion, Comput. Appl. Math., 2018, 37(4), 4301-4320. doi: 10.1007/s40314-018-0581-y |
[27] | Z. Liu and W. Wang, Favard separation method for almost periodic stochastic differential equations, J. Differ. Equ., 2016, 260(11), 8109-8136. doi: 10.1016/j.jde.2016.02.019 |
[28] | A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. |
[29] | S. Peng, G-Expectation, G-Brownian motion and related stochastic calculus of Itô type, Stoch. Anal. Appl., 2007, 2, 541-567. |
[30] | S. Peng, Law of large numbers and central limit theorem under nonlinear expectations, arXiv: 0702.358v1, 2007. |
[31] | S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 2008, 118(12), 2223-2253. doi: 10.1016/j.spa.2007.10.015 |
[32] | S. Peng, A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008. |
[33] | S. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China. Ser. A., 2009, 52(7), 1391-1411. doi: 10.1007/s11425-009-0121-8 |
[34] | S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion, arXiv: 1002.4546v1, 2010. |
[35] | B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differentsial'nye Uravneniya, 1975, 1349(7), 1246-1255. |
[36] | B. A. Shcherbakov, A certain class of Poisson stable solutions of differential equations, Differencial'nye Uravnenija, 1968, 4(2), 238-243, (in Russian). |
[37] | C. Tudor, Almost Periodic Stochastic Processes, In Qualitative Problems for Differential Equations and Control Theory. World Sci. Publ. River. Edge., NJ, 1995, 289-300. |
[38] | Q. Yang and P. Zhu, Doubly-weighted pseudo almost automorphic solutions for nonlinear stochastic differential equations driven by Lévy noise, Stochastics, 2017, 90(5), 1-19. |
[39] | Q. Yang and G. Li, Exponential stability of θ-method for stochastic differential equations in the G-framework, J. Comput. Appl. Math., 2019, 350, 195-211. doi: 10.1016/j.cam.2018.10.020 |
[40] | Q. Yang and P. Zhu, Stepanov-like doubly weighted pseudo almost automorphic processes and its application to Sobolev-type stochastic differential equations driven by G-Brownian motion, Math. Meth. Appl. Sci., 2017, 40, 6602-6622. doi: 10.1002/mma.4477 |
[41] | T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer, New York, 1975. |
[42] | C. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal. Appl., 1994, 181(1), 62-76. doi: 10.1006/jmaa.1994.1005 |
[43] | H. Zhu, J. Chu and W. Zhang, Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity, Discret. Contin. Dyn. Syst., 2018, 38(41), 1935-1953. |
[44] | M. Zhang and G. Zong, Almost periodic solutions for stochastic differential equations driven by G-Brownian motion, Commun. Stat-Theory Methods, 2015, 44(11), 2371-2384. doi: 10.1080/03610926.2013.863935 |