2022 Volume 12 Issue 6
Article Contents

Qigui Yang, Huoxia Liu, Xiaofang Lin. P-DISTRIBUTION ALMOST PERIODIC SOLUTIONS OF SEMI-LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH G-BROWNIAN MOTION[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2230-2267. doi: 10.11948/20210392
Citation: Qigui Yang, Huoxia Liu, Xiaofang Lin. P-DISTRIBUTION ALMOST PERIODIC SOLUTIONS OF SEMI-LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH G-BROWNIAN MOTION[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2230-2267. doi: 10.11948/20210392

P-DISTRIBUTION ALMOST PERIODIC SOLUTIONS OF SEMI-LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH G-BROWNIAN MOTION

  • Corresponding author: Email: qgyang@scut.edu.cn(Q. Yang) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (No. 12071151)
  • As a class of recurrence, almost periodicity has been studied in stochastic differential equations (SDEs) under the framework of linear expectation. However, in the framework of nonlinear expectation, there are few literatures on Poisson stable solutions for SDEs and (pseudo) almost periodic solutions for SDEs with exponential dichotomy. This paper is devoted to the existence and asymptotical stability of $ p $-distribution Poisson stable solutions for nonhomogeneous linear and semi-linear SDEs driven by $ G $-Brownian motion satisfying exponential stability. Moreover, some existence results of (pseudo) almost periodic solution in $ p $-distribution are established for semi-linear SDEs driven by $ G $-Brownian motion satisfying exponential dichotomy. Meanwhile, some examples are given to validate the obtained theoretical results.

    MSC: 92D25, 93D20, 93E03
  • 加载中
  • [1] L. Amerio and G. Prouse, Almost-Periodic Functions and Functional Equations, Van. Nostrand Reinhold Co., New York-Toronto, Ont-Melbourne, 1971.

    Google Scholar

    [2] H. Bohr, Zur theorie der fastperiodischen funktionen, (German), Acta Math., 1924, 45(1), 29-127.

    Google Scholar

    [3] H. Bohr, Zur theorie der fastperiodischen funktionen, (German) ii, Acta Math., 1925, 46(1), 101-214.

    Google Scholar

    [4] H. Bohr, Zur theorie der fastperiodischen funktionen, (German). iii, Acta Math., 1926, 47(1), 237-281.

    Google Scholar

    [5] J. Blot, P. Cieutat and P. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Appl. Anal., 2013, 92(3), 493-526. doi: 10.1080/00036811.2011.628941

    CrossRef Google Scholar

    [6] S. Bochner, A new approach to almost periodicity, Pro. Nat. Acad. of Sci., 1962, 48(12), 2039-2043. doi: 10.1073/pnas.48.12.2039

    CrossRef Google Scholar

    [7] F. Bedouhene, N. Challali, O. Mellah, P. R. Fitte and M. Smaali, Almost automorphy and various extensions for stochastic processes, J. Math. Anal. Appl., 2015, 429(2), 1113-1152. doi: 10.1016/j.jmaa.2015.04.014

    CrossRef Google Scholar

    [8] P. H. Bezandry and T. Diagana, Existence of almost periodic solutions to some stochastic differential equations, Appl. Anal., 2007, 86(7), 819-827. doi: 10.1080/00036810701397788

    CrossRef Google Scholar

    [9] J. Cao, Q. Yang, Z. Huang and Q. Liu, Asymptotically almost periodic solutions of stochastic functional differential equations, Appl. Math. Comput., 2011, 218(5), 1499-1511.

    Google Scholar

    [10] J. Campos and M. Tarallo, Almost automorphic linear dynamics by Favard theory, J. Differ. Equ., 2014, 256(12), 1350-1367.

    Google Scholar

    [11] P. Cieutat and K. Ezzinbi, Almost automorphic solutions for some evolution equations through the minimizing for some subvariant functional, applications to heat and wave equations with nonlinearities, J. Funct. Anal., 2011, 260(9), 2598-2634. doi: 10.1016/j.jfa.2011.01.002

    CrossRef Google Scholar

    [12] T. Caraballo and D. Cheban, Almost periodic and almost automorphic solutions of linear differential equations, Discret. Contin. Dyn. Syst., 2013, 33(5), 1857-1882. doi: 10.3934/dcds.2013.33.1857

    CrossRef Google Scholar

    [13] D. Cheban, Levitan/Bohr almost periodic and almost automorphic solutions of scalar differential equations, Dynam. Syst., 2018, 33(4), 1-25.

    Google Scholar

    [14] D. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations, J. Dyn. Differ. Equ., 2008, 20(3), 669-697. doi: 10.1007/s10884-008-9101-x

    CrossRef Google Scholar

    [15] D. Cheban, Bohr/Levitan almost periodic and almost automorphic solutions of linear stochastic differential equations without Favard's separation condition, arXiv: 1707.08723[math. DS], 2017.

    Google Scholar

    [16] D. Cheban and Z. Liu, Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations, J. Differ. Equ., 2020, 269(4), 3652-3685. doi: 10.1016/j.jde.2020.03.014

    CrossRef Google Scholar

    [17] J. Cao, Q. Yang and Z. Huang, Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stochastics., 2011, 83(3), 259-275. doi: 10.1080/17442508.2010.533375

    CrossRef Google Scholar

    [18] M. A. Diop, K. Ezzinbi and M. M. Mbaye, Existence and global attractiveness of a pseudo almost periodic solution in $p$-th mean sense for stochastic evolution equation driven by a fractional Brownian motion, Stochastics., 2015, 87(6), 1-33.

    Google Scholar

    [19] J. Du, K. Sun and Y. Wang, Pseudo almost automorphic solutions for non-autonomous stochastic differential equations with exponential dichotomy, Commun. Math. Res., 2014, 30(2), 139-156.

    Google Scholar

    [20] K. J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.

    Google Scholar

    [21] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., Springer-Verlag, Berlin-New York, 1974.

    Google Scholar

    [22] Y. Gu, Y. Ren and R. Sakthivel, Square-mean pseudo almost automorphic mild solutions for stochastic evolution equations driven by G-Brownian motion, Stoch. Anal. Appl., 2016, 34(3), 528-545. doi: 10.1080/07362994.2016.1155159

    CrossRef Google Scholar

    [23] M. Hu and S. Ji, Stochastic maximum principle for stochastic recursive optimal control problem under volatility ambiguity, SIAM J. Control Optim., 2016, 54(2), 918-945. doi: 10.1137/15M1037639

    CrossRef Google Scholar

    [24] M. Hu and S. Ji, Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion, Stoch. Process Appl., 2017, 127(1), 107-134. doi: 10.1016/j.spa.2016.06.002

    CrossRef Google Scholar

    [25] X. Li, X. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion, J. Math. Anal. Appl., 2016, 439(1), 235-255. doi: 10.1016/j.jmaa.2016.02.042

    CrossRef Google Scholar

    [26] G. Li and Q. Yang, Convergence and asymptotical stability of numerical solutions for neutral stochastic delay differential equations driven by G-Brownian motion, Comput. Appl. Math., 2018, 37(4), 4301-4320. doi: 10.1007/s40314-018-0581-y

    CrossRef Google Scholar

    [27] Z. Liu and W. Wang, Favard separation method for almost periodic stochastic differential equations, J. Differ. Equ., 2016, 260(11), 8109-8136. doi: 10.1016/j.jde.2016.02.019

    CrossRef Google Scholar

    [28] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.

    Google Scholar

    [29] S. Peng, G-Expectation, G-Brownian motion and related stochastic calculus of Itô type, Stoch. Anal. Appl., 2007, 2, 541-567.

    Google Scholar

    [30] S. Peng, Law of large numbers and central limit theorem under nonlinear expectations, arXiv: 0702.358v1, 2007.

    Google Scholar

    [31] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 2008, 118(12), 2223-2253. doi: 10.1016/j.spa.2007.10.015

    CrossRef Google Scholar

    [32] S. Peng, A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008.

    Google Scholar

    [33] S. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China. Ser. A., 2009, 52(7), 1391-1411. doi: 10.1007/s11425-009-0121-8

    CrossRef Google Scholar

    [34] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion, arXiv: 1002.4546v1, 2010.

    Google Scholar

    [35] B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differentsial'nye Uravneniya, 1975, 1349(7), 1246-1255.

    Google Scholar

    [36] B. A. Shcherbakov, A certain class of Poisson stable solutions of differential equations, Differencial'nye Uravnenija, 1968, 4(2), 238-243, (in Russian).

    Google Scholar

    [37] C. Tudor, Almost Periodic Stochastic Processes, In Qualitative Problems for Differential Equations and Control Theory. World Sci. Publ. River. Edge., NJ, 1995, 289-300.

    Google Scholar

    [38] Q. Yang and P. Zhu, Doubly-weighted pseudo almost automorphic solutions for nonlinear stochastic differential equations driven by Lévy noise, Stochastics, 2017, 90(5), 1-19.

    Google Scholar

    [39] Q. Yang and G. Li, Exponential stability of θ-method for stochastic differential equations in the G-framework, J. Comput. Appl. Math., 2019, 350, 195-211. doi: 10.1016/j.cam.2018.10.020

    CrossRef Google Scholar

    [40] Q. Yang and P. Zhu, Stepanov-like doubly weighted pseudo almost automorphic processes and its application to Sobolev-type stochastic differential equations driven by G-Brownian motion, Math. Meth. Appl. Sci., 2017, 40, 6602-6622. doi: 10.1002/mma.4477

    CrossRef Google Scholar

    [41] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer, New York, 1975.

    Google Scholar

    [42] C. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal. Appl., 1994, 181(1), 62-76. doi: 10.1006/jmaa.1994.1005

    CrossRef Google Scholar

    [43] H. Zhu, J. Chu and W. Zhang, Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity, Discret. Contin. Dyn. Syst., 2018, 38(41), 1935-1953.

    Google Scholar

    [44] M. Zhang and G. Zong, Almost periodic solutions for stochastic differential equations driven by G-Brownian motion, Commun. Stat-Theory Methods, 2015, 44(11), 2371-2384. doi: 10.1080/03610926.2013.863935

    CrossRef Google Scholar

Article Metrics

Article views(2514) PDF downloads(499) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint