2022 Volume 12 Issue 5
Article Contents

Haiyan Xu, Zhigui Lin, Carlos Alberto Santos. PERSISTENCE, EXTINCTION AND BLOWUP IN A GENERALIZED LOGISTIC MODEL WITH IMPULSES AND REGIONAL EVOLUTION[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1922-1944. doi: 10.11948/20210393
Citation: Haiyan Xu, Zhigui Lin, Carlos Alberto Santos. PERSISTENCE, EXTINCTION AND BLOWUP IN A GENERALIZED LOGISTIC MODEL WITH IMPULSES AND REGIONAL EVOLUTION[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1922-1944. doi: 10.11948/20210393

PERSISTENCE, EXTINCTION AND BLOWUP IN A GENERALIZED LOGISTIC MODEL WITH IMPULSES AND REGIONAL EVOLUTION

  • Corresponding author: Email: zglin@yzu.edu.cn (Z. Lin) 
  • Fund Project: The first author is supported by the Natural Science Foundation of Jiangsu Province, PR China (No. BK20220553), the second author is supported by the National Natural Science Foundation of China (No. 11771381) and Carlos Alberto Santos acknowledgesthe support of CNPq/Brazil Proc. No 311562/2020-5
  • To explore the impacts of regional evolution and impulses on the persistence or extinction of species, a generalized logistic model with impulses in an evolving domain is proposed and researched. Firstly, the ecological reproduction index, which is regarded as a threshold value, is introduced and characterized. Secondly, in the case of monotone or non-monotone impulsive function, the asymptotic behavior of population is fully investigated and the sufficient conditions for the solution to persist, be extinct or blow up are given. Finally, numerical simulations results indicate that whatever impulse is, larger periodic evolution rates are more favorable for species. However, impulsive harvesting has a negative impact on persistence of species, while birth pulse admits a positive impact and even results in blowup.

    MSC: 35K57, 35R12, 92D25
  • 加载中
  • [1] B. Adam, Z. Lin and A. K. Tarboush, Asymptotic profile of a mutualistic model on a periodically evolving domain, Int. J. Biomath., 2019, 12(7).

    Google Scholar

    [2] L. J. S. Allen, B. M. Bolker, Y. Lou et al., Asymptotic profies of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 2008, 21, 1-20. doi: 10.3934/dcds.2008.21.1

    CrossRef Google Scholar

    [3] Z. Bai and X. Zhao, Basic reproduction ratios for periodic and time-delayed compartmental models with impulses, J. Math. Biol., 2020, 80(4), 1095-1117. doi: 10.1007/s00285-019-01452-2

    CrossRef Google Scholar

    [4] R. J. H. Beverton, On the dynamics of exploited fish populations, Reviews in Fish Biology & Fisheries, 1994, 4(2), 259-260.

    Google Scholar

    [5] F. Brauer and C. Castillo-Chš¢vez, Mathematical models in population biology and epidemiology, Springer, New York, 2001.

    Google Scholar

    [6] R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons Ltd., New York, 2003.

    Google Scholar

    [7] E. J. Crampin, E. A. Gaffney and P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model, J. Math. Biol., 2002, 44(2), 107-128. doi: 10.1007/s002850100112

    CrossRef Google Scholar

    [8] Y. Du and W. Ni, Analysis of a West Nile virus model with nonlocal diffusion and free boundaries, Nonlinearity, 2020, 33(9), 4407-4448. doi: 10.1088/1361-6544/ab8bb2

    CrossRef Google Scholar

    [9] S. P. Ellner, E. E. Mccauley, B. E. Kendall et al., Habitat structure and population persistence in an Experimental community, Nature, 2001, 412, 538-543.

    Google Scholar

    [10] J. Ge, K. I. Kim, Z. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 2015, 259(10), 5486-5509. doi: 10.1016/j.jde.2015.06.035

    CrossRef Google Scholar

    [11] J. Ge, Z. Lin and H. Zhu, Modeling the spread of West Nile virus in a spatially heterogeneous and advective environment, J. Appl. Anal. Comput., 2021, 11(4), 1868-1897.

    Google Scholar

    [12] R. P. Gupta and P. Chandra, Dynamical properties of a prey-predator-scavenger model with quadratic harvesting, Commun. Nonlinear Sci. Numer. Simul., 2017, 49, 202-214. doi: 10.1016/j.cnsns.2017.01.026

    CrossRef Google Scholar

    [13] J. Jiao and L. Chen, Dynamical analysis of a delayed predator-prey system with birth pulse and impulsive harvesting at different moments, Adv. Difference Equ., 2010. DOI: 10.1155/2010/954684.

    CrossRef Google Scholar

    [14] D. Jiang and Z. Wang, The diffusive logistic equation on periodically evolving domains, J. Math. Anal. Appl., 2018, 458(2), 93-111.

    Google Scholar

    [15] K. I. Kim, Z. Lin and Q. Zhang, An SIR epidemic model with free boundary, Nonlinear Anal. Real World Appl., 2013, 14(5), 1992-2001. doi: 10.1016/j.nonrwa.2013.02.003

    CrossRef Google Scholar

    [16] Y. Kawai, Y. Yamada and M. Zhang, Multiple Spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 2016, 261(1), 538-572. doi: 10.1016/j.jde.2016.03.017

    CrossRef Google Scholar

    [17] S. Kondo, R. Asia and P. Driessche, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 1995, 376(31), 765-768.

    Google Scholar

    [18] M. Kot, M. A. Lewis and P. Driessche, Dispersal data and the spread of invading species, Ecology, 1996, 77(7), 2027-2042. doi: 10.2307/2265698

    CrossRef Google Scholar

    [19] M. A. Lewis and B. Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol., 2012, 74(10), 2383-2402. doi: 10.1007/s11538-012-9757-6

    CrossRef Google Scholar

    [20] Z. Liu, S. Zhong, C. Yin et al., Dynamics of impulsive reaction-diffusion predator-prey system with Holling III type functional response, Applied Mathematical Modelling, 2011, 35(12), 5564-5578. doi: 10.1016/j.apm.2011.05.019

    CrossRef Google Scholar

    [21] Y. Lou and X. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 2011, 62(4), 543-568. doi: 10.1007/s00285-010-0346-8

    CrossRef Google Scholar

    [22] D. Maity, M. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures. Appl., 2019, 129(9), 153-179.

    Google Scholar

    [23] Y. Meng, Z. Lin and M. Pedersen, A model for spatial spreading and dynamics of fox rabies on a growing domain, Electron. J. Qual. Theory Differ. Equ., 2020, 20, 1-14.

    Google Scholar

    [24] Y. Meng, Z. Lin and M. Pedersen, Effects of impulsive harvesting and an evolving domain in a diffusive logistic model, Nonlinearity, 2021, 34(10), 7005-7029. doi: 10.1088/1361-6544/ac1f78

    CrossRef Google Scholar

    [25] A. Okubo and S. Levin, Diffusion and ecological problems, Springer, New York, 2001.

    Google Scholar

    [26] R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 2012, 25(5), 1451-1471. doi: 10.1088/0951-7715/25/5/1451

    CrossRef Google Scholar

    [27] L. Pu and Z. Lin, Effects of depth and evolving rate on phytoplankton growth in a periodically evolving environment, J. Math. Anal. Appl., 2021, 493(1), 124502. doi: 10.1016/j.jmaa.2020.124502

    CrossRef Google Scholar

    [28] J. Shang, B. Li and M. R. Barnard, Bifurcations in a discrete time model composed of Beverton-Holt function and Ricker function, Mathematical Biosciences, 2015, 263, 161-168. doi: 10.1016/j.mbs.2015.02.014

    CrossRef Google Scholar

    [29] S. Tang and L. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn. Syst., 2012, 4(3), 759-768.

    Google Scholar

    [30] A. M. Turing, The chemical basis of morphogenesis, Bull. Math. Biol., 1952, 237(641), 37-72.

    Google Scholar

    [31] N. Wang, L. Zhang and Z. Teng, A reaction-diffusion model for nested within-host and between-host dynamics in an environmentally-driven infectious disease, J. Appl. Anal. Comput., 2021, 11(4), 1898-1926.

    Google Scholar

    [32] W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 2012, 11(4), 1652-1673. doi: 10.1137/120872942

    CrossRef Google Scholar

    [33] R. Wu and X. Zhao, Spatial invasion of a birth pulse population with nonlocal dispersal, SIAM J. Appl. Math., 2019, 79(3), 1075-1097. doi: 10.1137/18M1209805

    CrossRef Google Scholar

    [34] H. Xu, J. Ge and Z. Lin, The Diffusive Characteristics of the Generalized Logistic Model on an Evolving Domain, Journal of jiangxi Normal University, 2020, 44(4), 19-23.

    Google Scholar

    [35] M. Zhang and Z. Lin, A reaction-diffusion-advection model for Aedes aegypti mosquitoes in a time-periodic environment, Nonlinear Anal. Real World Appl., 2019, 46, 219-237. doi: 10.1016/j.nonrwa.2018.09.014

    CrossRef Google Scholar

    [36] X. Zhao, Dynamical systems in population biology, Second edition, CMS Books in Mathematics, Springer, Cham, 2017.

    Google Scholar

Figures(10)  /  Tables(2)

Article Metrics

Article views(3193) PDF downloads(432) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint