Citation: | Zijian Wu, Haibo Chen. MULTIPLE SOLUTIONS FOR A CLASS OF MODIFIED QUASILINEAR FOURTH-ORDER ELLIPTIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1945-1958. doi: 10.11948/20210401 |
In this paper, we consider the following modified quasilinear fourth-order elliptic equations:
$ \begin{equation*} \Delta^2u-(a+b\int_{ \mathbb{R}^3}|\nabla u|^2dx)\Delta u+V(x)u-\frac{\kappa}{2}\Delta(u^2)u=f(x, u), \quad \mbox{ in } \mathbb{R}^3, \end{equation*} $
where $ a>0, b\geq0, \kappa\geq0 $. Under some appropriate assumptions on $ V(x) $ and $ f(x, u) $, multiplicity results of two different type of solutions are established via the Mountain Pass lemma and the local minimization.
[1] | A. L. A. D. Araujo and L. F. D. O. Faria, Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term, J. Differential Equations, 2019, 267(8), 4589-4608. doi: 10.1016/j.jde.2019.05.006 |
[2] | H. Ansari and S. M. Vaezpour, Existence and multiplicity of solutions for fourth-order elliptic Kirchhoff equations with potential term, Complex Var. Elliptic Equ., 2015, 60(5), 668-695. doi: 10.1080/17476933.2014.968847 |
[3] | H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 1983, 88(3), 486-490. doi: 10.1090/S0002-9939-1983-0699419-3 |
[4] | D. G. Costa, An Invitation to Variational Methods in Differential Equations, Birkhäuser, Berlin, 2006. |
[5] | F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 2011, 74(17), 5962-5974. doi: 10.1016/j.na.2011.05.073 |
[6] | S. Chen, J. Liu and X. Wu, Existence and multiplicity of nontrivial solutions for a class of modified nonlinear fourth-order elliptic equations on $ \mathbb{R}^n $, Appl. Math. Comput., 2014, 248, 593-601. doi: 10.1016/j.amc.2014.10.021 |
[7] | L. Damascelli, M. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1999, 16(5), 631-652. doi: 10.1016/s0294-1449(99)80030-4 |
[8] | I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, Berlin, 1990. |
[9] | E. M. Hssini, M. Massar and N. Tsouli, Solutions to Kirchhoff equations with critical exponent, Arab J. Math. Sci., 2016, 22(1), 138-149. |
[10] | J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations, Proc. Amer. Math. Soc., 2003, 131(2), 441-448. |
[11] | J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via Nehair method, Comm. Partial Differential Equations, 2004, 29(5), 879-901. |
[12] |
S. Liu and Z. Zhao, Solutions for fourth order elliptic equations on $ \mathbb{R}^N $ involving uΔ(u2) and sign-changing potentials, J. Differential Equations, 2019, 267(3), 1581-1599. doi: 10.1016/j.jde.2019.02.017
CrossRef $ \mathbb{R}^N $ involving uΔ(u2) and sign-changing potentials" target="_blank">Google Scholar |
[13] | T. Ma, Positive solutions for a nonlocal fourth order equation of Kirchhoff type, Discrete Contin. Dyn. Syst., 2007. DOI: 10.3934/proc.2007.2007.694. |
[14] | O. H. Miyagaki and P. Pucci, Nonlocal Kirchhoff problems with Trudinger-Moser critical nonlinearities, NoDEA Nonlinear Differential Equations Appl., 2019. DOI: 10.1007/s00030-019-0574-6. |
[15] | G. Molica Bisci and P. Pucci, Multiple sequences of entire solutions for critical polyharmonic equations, Riv. Math. Univ. Parma (N.S. ), 2019, 10(1), 117-144. |
[16] | A. Mao and W. Wang, Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in $ \mathbb{R}^3 $, J. Math. Anal. Appl., 2018, 459(1), 556-563. doi: 10.1016/j.jmaa.2017.10.020 |
[17] | M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 2002, 14(3), 329-344. doi: 10.1007/s005260100105 |
[18] | D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 2010, 23(5), 1221-1233. doi: 10.1088/0951-7715/23/5/011 |
[19] | P. H. Rabinowitz, Minimax Methods in criticial Point Theory with Applications to Differential Equations, Regional Conf. Ser. in Math. Amer. Math. Soc., 1986. |
[20] | K. Silva and A. Macedo, Local minimizers over the Nehari manifold for a class of concave-convex problems with sign changing nonlinearity, J. Differential Equations, 2018, 265(5), 1894-1921. doi: 10.1016/j.jde.2018.04.018 |
[21] | M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996. |
[22] | F. Wang, T. An and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type on $ \mathbb{R}^N $, Electron. J. Qual. Theory Differ. Equ., 2014, 39, 1-11. |
[23] | F. Wang, M. Avci and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, J. Math. Anal. Appl., 2014, 409(1), 140-146. doi: 10.1016/j.jmaa.2013.07.003 |
[24] | F. Wang and Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl., 2012, 2012(6), 2-9. |
[25] | D. Wu and F. Li, Solutions for fourth-order Kirchhoff type elliptic equations involving concave-convex nonlinearities in $ \mathbb{R}^n $, Comput. Math. Appl., 2020, 79(2), 489-499. doi: 10.1016/j.camwa.2019.07.007 |
[26] | J. Zhang, X. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation, Appl. Math. Lett., 2014, 37, 131-135. doi: 10.1016/j.aml.2014.06.010 |
[27] | J. Zhang, X. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 2014, 420(2), 1762-1775. doi: 10.1016/j.jmaa.2014.06.055 |