2022 Volume 12 Issue 5
Article Contents

Shuangshuang Xia, Zenggui Wang. LIE SYMMETRIES, GROUP INVARIANT SOLUTIONS AND CONSERVATION LAWS OF IDEAL MHD EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1959-1986. doi: 10.11948/20210410
Citation: Shuangshuang Xia, Zenggui Wang. LIE SYMMETRIES, GROUP INVARIANT SOLUTIONS AND CONSERVATION LAWS OF IDEAL MHD EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1959-1986. doi: 10.11948/20210410

LIE SYMMETRIES, GROUP INVARIANT SOLUTIONS AND CONSERVATION LAWS OF IDEAL MHD EQUATIONS

  • Corresponding author: Email: wangzenggui@lcu.edu.cn(Z. Wang)
  • Fund Project: The authors were supported by National Science Foundation for Young Scientists of China (Nos. 11001115, 11201473), Natural Science Foundation of Shandong Province (No. ZR2021MA084) and Natural Science Foundation of Liaocheng University (No. 318012025)
  • In this paper, the method of Lie symmetry is used to study the incompressible ideal MHD equations. We derive the infinitesimal generators of MHD by using Lie symmetry method. Then, we get the group invariant solutions to MHD based on the group transformation and known solutions. An one-dimensional optimal system which only depends on the commutator of Lie algebras is constructed. Through the similarity transformation of the optimal system, we obtain the 1 + 1-dimensional reduced partial differential equations, and further obtain the exact solutions of these equations, such as Bell soliton solution, junction soliton solution and seed solution. In addition, we prove the nonlinear self-adjoint and conservation laws of the MHD equations using the Ibragimov method. Finally, the classical symmetry and solutions to incompressible ideal MHD equations with initial conditions left invariant are discussed.

    MSC: 35Q53, 35C07, 35Q92
  • 加载中
  • [1] A. H. Abdel-Kader, M. S. Abdel-Latif and H. M. Nour, Some new exact solutions of the modified kdv equation using Lie point symmetry method, Int. J. Appl. Comput. Math., 2017, 3(1), 1163-1171.

    Google Scholar

    [2] M. S. Abdel-Latif, A. H. Abdel-Kader and H. M. Nour, Exact implicit solution of nonlinear heat transfer in rectangular straight fin using symmetry reduction methods, Appl. Math., 2015, 10(2), 864-877.

    Google Scholar

    [3] S. K. Al-Nassar and J. Goard, Symmetries for initial value problems, Applied Mathematics Letters, 2014, 28, 56-59. doi: 10.1016/j.aml.2013.09.012

    CrossRef Google Scholar

    [4] S. K. Al-Nassar, Nonclassical symmetry analysis of second order parabolic partial differential equations, University of Wollongong, 2012.

    Google Scholar

    [5] H. Baran, I. S. Krasil'shchik, O. I. Morozov and P. Voják, Symmetry reductions and exact solutions of Lax integrable 3-dimensional systems, Journal of Mathematical Physics, 2015, 21, 643-671.

    Google Scholar

    [6] Y. Bai and D. Su, One-Dimensional Optimal System and Invariant Solution of Poisson Equation, Journal of Mathematics, 2018, 38(4), 706-712.

    Google Scholar

    [7] Q. Chen, C. Miao and Z. Zhang, On the well-posedness of the ideal MHD equations in the Triebel-lizorkin spaces, Arch. Rational Mech. Anal., 2010, 195, 561-578. doi: 10.1007/s00205-008-0213-6

    CrossRef Google Scholar

    [8] Y. Chan, Z. Han and L. Zhang, A direct algorithm maple package of One-dimensional optimal system for group invariant solutions, Communications in Theoretical Physics, 2018, 69(1), 14-22. doi: 10.1088/0253-6102/69/1/14

    CrossRef Google Scholar

    [9] F. Demontis, B. Prinari, B. C. Mee, et al., The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions, J. Math. Phys., 2014, 55(10), 101505. doi: 10.1063/1.4898768

    CrossRef Google Scholar

    [10] G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 1972, 46, 241-279. doi: 10.1007/BF00250512

    CrossRef Google Scholar

    [11] M. Dong, S. Tian, X. Yan, et al., Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn., 2018, 92(2), 709-720. doi: 10.1007/s11071-018-4085-5

    CrossRef Google Scholar

    [12] B. Gao and S. Zhang, Invariant solutions of the normal hyperbolic mean curvature flow with dissipation, Arch. Math., 2020, 114, 227-239. doi: 10.1007/s00013-019-01397-4

    CrossRef Google Scholar

    [13] F. Gao and Z. Wang, Nonlinear self-adjointness and conservation laws for the modified dissipative hyperbolic geometric flow equation, Journal of Geometry and Physics, 2021, 167, 104304. doi: 10.1016/j.geomphys.2021.104304

    CrossRef Google Scholar

    [14] N. H. Ibragimov, A new conservation theorem, Journal of Mathematical Physics, 2007, 333, 311-328.

    Google Scholar

    [15] N. H. Ibragimov and E. D. Avdonina, Nonlinear self-adjointness, conservation laws and the construction of solutions of partial differential equations using conservation laws, Russ. Math. Surv., 2013, 68(5), 889-921. doi: 10.1070/RM2013v068n05ABEH004860

    CrossRef Google Scholar

    [16] L. Li, C. Duan and F. Yu, An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV), Physics Letters A, 2019, 383, 1578-1582. doi: 10.1016/j.physleta.2019.02.031

    CrossRef Google Scholar

    [17] B. Liu and T. Ren, Global well-posedness to the cauchy problem of 3D incompressible Two-fluid MHD model with small initial data, Journal of lishui university, 2016, 38(2).

    Google Scholar

    [18] M. Liu and H. Dong, On the existence of solution, Lie symmetry analysis and conservation law of magnetohydrodynamic equations, Commun. Nonlinear Sci. Numer. Simulat., 2020, 87, 105277. doi: 10.1016/j.cnsns.2020.105277

    CrossRef Google Scholar

    [19] M. Liu and R. Yuan, On the well-posedness of strong solution to ideal magnetohydrodynamic equations, Int. J. comput. Math., 2017, 94, 2458-2465. doi: 10.1080/00207160.2017.1283413

    CrossRef Google Scholar

    [20] E. Noether, Invariante variations probleme, Mathematisch-Physikalische Klasse, 1918, 2, 235-257.

    Google Scholar

    [21] A. P. Oskolkov, The uniqueness and global solvability of boundary-value problems for the equations of motion for aqueous solutions of polymers, Journal of Soviet Mathematics, 1977, 427-455.

    Google Scholar

    [22] A. P. Oskolkov, On a quasilinear parabolic system with a small parameter, approximating the Navier-Stokes system of equations, Zap. Nauchn. Sem. LOMI, 1971, 21, 79-103.

    Google Scholar

    [23] M. Osman, et al., Double-wave solutions and Lie symmetry analysis to the (2+1)-dimensional coupled Burgers equations, Chinese J. Phy., 2020, 63, 122-129.

    Google Scholar

    [24] M. Osman, et al., Double-wave solutions and Lie symmetry analysis to the (2+ 1)-dimensional coupled Burgers equations, Chinese J. Phy., 2020, 63, 122-129.

    Google Scholar

    [25] Y. Ohta and J. Yang, General rogue waves in the focusing and defocusing AblowitzšCLadik equations, J. Phys. A: Math. Theor., 2014, 47, 255201. doi: 10.1088/1751-8113/47/25/255201

    CrossRef Google Scholar

    [26] B. Prinari and F. Vitale, Inverse scattering transform for the focusing Ablowitz-Ladik system with nonzero boundary conditions, Stud. Appl. Math., 2016, 137, 28-52. doi: 10.1111/sapm.12103

    CrossRef Google Scholar

    [27] H. O. Roshid and W. Ma, Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model, Phys. Lett. A, 2018, 382, 3262-3268. doi: 10.1016/j.physleta.2018.09.019

    CrossRef Google Scholar

    [28] G. Wang, Symmetry analysis and rogue wave solutions for the (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients, Appl. Math. Lett., 2016, 56, 56-64. doi: 10.1016/j.aml.2015.12.011

    CrossRef Google Scholar

    [29] J. Wu, Viscous and inviscid magnetohydrodynamic equations, Journal of Mathematique, 1997, 73, 250-265.

    Google Scholar

    [30] J. Wu, Generlized MHD equations, Journal of Differential equations, 2003, 195, 284-312. doi: 10.1016/j.jde.2003.07.007

    CrossRef Google Scholar

    [31] X. Wen and Z. Yan, Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation, J. Math. Phys., 2018, 59, 73511. doi: 10.1063/1.5048512

    CrossRef Google Scholar

    [32] X. Wen and D. Wang, Modulational instability and higher order rogue wave solutions for the generalized discrete Hirota equation, An International Journal Reporting Research on Wave Phenomena, 2018, 79, 84-97.

    Google Scholar

    [33] S. Xia and Z. Wang, Group invariant solutions and conservation laws of (2+1)-dimensional AKNS equation, Journal of Geometry and Physics, 2022, 175, 104486.

    Google Scholar

    [34] Y. Yang and Y. Zhu, Darboux-Bäcklund transformation, breather and rogue wave solutions for Ablowitz-Ladik equation, Optik, 2020, 217, 164920. doi: 10.1016/j.ijleo.2020.164920

    CrossRef Google Scholar

    [35] Z. Zhao, Bäcklund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev-Petviashvili equation, Applied Mathematics Letters, 2019, 89, 103-110. doi: 10.1016/j.aml.2018.09.016

    CrossRef Google Scholar

    [36] Z. Zhang and Y. Chen, Classical and nonclassical symmetries analysis for initial value problems, Physics Letters A, 2010, 374(9), 1117-1120. doi: 10.1016/j.physleta.2009.12.052

    CrossRef Google Scholar

Figures(9)  /  Tables(3)

Article Metrics

Article views(3337) PDF downloads(210) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint