2022 Volume 12 Issue 5
Article Contents

Chuanxi Zhu, Li Zhou. INFINITELY MANY SOLUTIONS FOR A QUASILINEAR KIRCHHOFF-TYPE EQUATION WITH HARTREE-TYPE NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1987-1996. doi: 10.11948/20210416
Citation: Chuanxi Zhu, Li Zhou. INFINITELY MANY SOLUTIONS FOR A QUASILINEAR KIRCHHOFF-TYPE EQUATION WITH HARTREE-TYPE NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1987-1996. doi: 10.11948/20210416

INFINITELY MANY SOLUTIONS FOR A QUASILINEAR KIRCHHOFF-TYPE EQUATION WITH HARTREE-TYPE NONLINEARITIES

  • Corresponding authors: Email: chuanxizhu@126.com(C. Zhu);  Email: 397621669@qq.com(L. Zhou)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11771198, 11901276) and Science and Technology project of Education Department of Jiangxi Province (No. GJJ218406)
  • In this paper, we consider a new kind of Kirchhoff-type equation with Hartree-type nonlinearities which is stated in the introduction. Under certain assumptions on g(u), we prove that the equation has infinitely many solutions by variational methods.

    MSC: 35J60, 35J20
  • 加载中
  • [1] H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Arch. Ration. Mech. Anal., 1983, 82, 313-346. doi: 10.1007/BF00250555

    CrossRef Google Scholar

    [2] T. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 1983, 7, 241-273.

    Google Scholar

    [3] J. M. Bezerra do Ö, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 2010, 248, 722-744. doi: 10.1016/j.jde.2009.11.030

    CrossRef Google Scholar

    [4] M. Chimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 2016, 271, 107-135. doi: 10.1016/j.jfa.2016.04.019

    CrossRef Google Scholar

    [5] M. Colin and L. Jeanjean, Solutions for quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 2004, 56, 213-226. doi: 10.1016/j.na.2003.09.008

    CrossRef Google Scholar

    [6] P. Chen and X. Liu, Ground states for Kirchhoff equation with Hartree-type nonlinearities, J. Math. Anal. Appl., 2019, 473, 587-608. doi: 10.1016/j.jmaa.2018.12.076

    CrossRef Google Scholar

    [7] X. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 2013, 254, 2015-2032. doi: 10.1016/j.jde.2012.11.017

    CrossRef Google Scholar

    [8] D. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Annal., 2014, 99, 35-48. doi: 10.1016/j.na.2013.12.022

    CrossRef Google Scholar

    [9] E. H. Lieb and M. Loss, Analysis, second ed, Grad. Stud. Math, vol 14, American Mathematical Scoiety, Province, RL, 2001.

    Google Scholar

    [10] J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 2003, 187, 473-493. doi: 10.1016/S0022-0396(02)00064-5

    CrossRef Google Scholar

    [11] X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 2013, 141, 253-263.

    Google Scholar

    [12] X. Liu and F. Zhao, Existence of infinitely many solutions for quasilinear equations perturbed from symmetry, Adv. Nonlinear Stud., 2013, 13, 965-978. doi: 10.1515/ans-2013-0412

    CrossRef Google Scholar

    [13] L. Ma and Z. Lin, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch Ration. Mech. Aral., 2010, 195, 455-467. doi: 10.1007/s00205-008-0208-3

    CrossRef Google Scholar

    [14] I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of Schrödinger-Newton equations, Classical Quantum Gravity, 1998, 15, 2733-2742. doi: 10.1088/0264-9381/15/9/019

    CrossRef Google Scholar

    [15] V. Morozand and J. Van Schaftingen, Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 2013, 265, 153-184. doi: 10.1016/j.jfa.2013.04.007

    CrossRef Google Scholar

    [16] V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 2015, 367, 6557-6579.

    Google Scholar

    [17] V. Moroz and J. Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differential Equations, 2013, 254, 3089-3145. doi: 10.1016/j.jde.2012.12.019

    CrossRef Google Scholar

    [18] V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 2015, 17, 1550005. doi: 10.1142/S0219199715500054

    CrossRef Google Scholar

    [19] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 2017, 19, 773-813. doi: 10.1007/s11784-016-0373-1

    CrossRef Google Scholar

    [20] J. Marcos do Ö and U. Devero, Solitary waves for a class of quasilinear Schrödinger equations in demension two, Calc. Var. Partial Differential Equations, 2010, 38, 275-315. doi: 10.1007/s00526-009-0286-6

    CrossRef Google Scholar

    [21] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBMS Reg. Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Province, RI, 1986.

    Google Scholar

    [22] E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 2010, 39, 1-33. doi: 10.1007/s00526-009-0299-1

    CrossRef Google Scholar

    [23] E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 2010, 72, 2935-2949. doi: 10.1016/j.na.2009.11.037

    CrossRef Google Scholar

    [24] X. Tang, Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity, J. Math. Anal. Appl., 2013, 401, 407-415. doi: 10.1016/j.jmaa.2012.12.035

    CrossRef Google Scholar

    [25] X. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., 2014, 14, 349-361.

    Google Scholar

    [26] M. Willem, Minimax Theorems, Proress in Nonlinear Differential Equations and Their Applications 24, Birkhäuser, Boston, MA, 1996.

    Google Scholar

    [27] X. Wu and K. Wu, Existence of positive solutions, negative solutions and high energy solutions for quasilinear elliptic equations on $ \mathbb{R}^N $, Nonlinear Anal., Real Word Appl., 2014, 16, 48-64. doi: 10.1016/j.nonrwa.2013.09.005

    CrossRef $ \mathbb{R}^N $" target="_blank">Google Scholar

    [28] X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 2014, 256, 2619-2632. doi: 10.1016/j.jde.2014.01.026

    CrossRef Google Scholar

    [29] X. Yang, W. Zhang and F. Zhao, Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method, J. Math. Phys., 2018, 59, 081503. doi: 10.1063/1.5038762

    CrossRef Google Scholar

    [30] J. Zhang, X. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation, Appl. Math. Lett., 2014, 37, 131-135. doi: 10.1016/j.aml.2014.06.010

    CrossRef Google Scholar

Article Metrics

Article views(2717) PDF downloads(343) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint