2022 Volume 12 Issue 5
Article Contents

Jinsen Zhuang, Yan Zhou. BIFURCATIONS OF SOLITARY WAVES, PERIODIC PEAKONS AND COMPACTONS OF A COUPLED NONLINEAR WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1997-2013. doi: 10.11948/20210424
Citation: Jinsen Zhuang, Yan Zhou. BIFURCATIONS OF SOLITARY WAVES, PERIODIC PEAKONS AND COMPACTONS OF A COUPLED NONLINEAR WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1997-2013. doi: 10.11948/20210424

BIFURCATIONS OF SOLITARY WAVES, PERIODIC PEAKONS AND COMPACTONS OF A COUPLED NONLINEAR WAVE EQUATION

  • Corresponding author: Email address: zy4233@hqu.edu.cn(Y. Zhou)
  • Fund Project: This research was partially supported by the National Natural Science Foundation of China (11571318) and Natural Science Foundation of Fujian Province (2021J01303)
  • For a coupled nonlinear wave equation system, its travelling wave system just is a singular traveling wave system of the first class depending on nine parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has kink and anti-kink wave solutions, periodic solutions, periodic peakons and compactons as well as different solitary wave solutions.

    MSC: 34C37, 34C23, 74J30, 58Z05
  • 加载中
  • [1] A. Biswas, M. Ekici, A. Sonmezoglu and R. T. Alqahtani, Optical soliton perturbation with full nonlinearity for Fokas–Lenells equation, Optik, 2018, 165, 29-34, doi: 10.1016/j.ijleo.2018.03.094

    CrossRef Google Scholar

    [2] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Springer, Berlin, 1971.

    Google Scholar

    [3] J. Chehab and D. Dutykh, On time relaxed schemes and formulations for dispersive wave equations, AIMS Math., 2019, 4, 254-278. doi: 10.3934/math.2019.2.254

    CrossRef Google Scholar

    [4] C. Gu, On the Backlund transformations for the generalized hierarchies of compound MKdV-SG equations, Lett. Math. Phys., 1986, 12, 31-41. doi: 10.1007/BF00400301

    CrossRef Google Scholar

    [5] C. Guha-Roy, Solitary wave solutions of a system of coupled nonlinear equation, J. Math. Phys., 1987, 28, 2087. doi: 10.1063/1.527419

    CrossRef Google Scholar

    [6] C. Guha-Roy, Exact solutions to a coupled nonlinear equation, Inter, J. Theor. Phys., 1988, 27, 447. doi: 10.1007/BF00669393

    CrossRef Google Scholar

    [7] X. Hu and Z. Zhu, A Backlund transformation and nonlinear superposition formula for the Belov-Chaltikian lattice, J. Phys. A, 1998, 31, 4755-4761. doi: 10.1088/0305-4470/31/20/012

    CrossRef Google Scholar

    [8] R. Hirota, X. Hu and X. Tang, A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Backlund transformations and Lax pairs, J. Math. Anal. Appl., 2003, 288, 326-348. doi: 10.1016/j.jmaa.2003.08.046

    CrossRef Google Scholar

    [9] W. Li and X. Geng, Darboux transformation of a differential-difference equation and its explicit solutions, Chinese Phys. Lett., 2006, 23, 1361-1364. doi: 10.1088/0256-307X/23/6/002

    CrossRef Google Scholar

    [10] S. Lou and J. Lu, Special solutions from the variable separation approach: the Davey-Stewartson equation, J. Phys. A, 1996, 29, 4209-4215. doi: 10.1088/0305-4470/29/14/038

    CrossRef Google Scholar

    [11] Z. Liu and T. Qian, Peakons of the Camassa-Holm equation, Appl. Math. Model., 2002, 26, 473-480. doi: 10.1016/S0307-904X(01)00086-5

    CrossRef Google Scholar

    [12] D. Lu and G. Yang, Compacton solutions and peakon solutions for a coupled nonlinear wave equation, Inter. J. Nonlinear Science, 2007, 4, 31-36.

    Google Scholar

    [13] X. Liu and C. He, New exact solitary wave solutions of a coupled nonlinear wave equation, Abstr. Appl. Anal., 2013, 1-7.

    Google Scholar

    [14] J. Li and G. Chen, Bifurcations of travelling wave solutions for four classes of nonlinear wave equations, Int. J. Bifurcation and Chaos, 2005, 15, 3973-3998. doi: 10.1142/S0218127405014416

    CrossRef Google Scholar

    [15] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17, 4049-4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [16] J. Li, Y. Zhang and X. Zhao, On a class of singular nonlinear traveling wave equations (Ⅱ): an example of GCKdV equations, Int. J. Bifurcation and Chaos, 2009, 19, 1955-2007.

    Google Scholar

    [17] J. Li, W. Zhou and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifurcation and Chaos, 2016, 26(12), 1650207. doi: 10.1142/S0218127416502072

    CrossRef Google Scholar

    [18] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [19] W. Ma, Complexiton solutions of the Korteweg-de Vries equation with selfconsistent sources, Chaos Soliton Fract., 2005, 26, 1453-1458. doi: 10.1016/j.chaos.2005.03.030

    CrossRef Google Scholar

    [20] Y. Shang, Explicit and exact solutions for a coupled nonlinear wave equation, J. Ningxia University (Natural Science Edition), 2000, 21, 290-294.

    Google Scholar

    [21] X. Xu and J. Zhang, New exact and explicit solitary wave solutions to a class of coupled nonlinear equation, Commun. Nonlinear Sci., 1998, 3, 189-193. doi: 10.1016/S1007-5704(98)90015-6

    CrossRef Google Scholar

Figures(11)

Article Metrics

Article views(2500) PDF downloads(279) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint