Citation: | Jingqun Wang, Yingnan Zhang, Lixin Tian. NONLINEAR STABILITY OF BREATHER SOLUTIONS TO THE MODIFIED KDV-SINE-GORDON EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2043-2056. doi: 10.11948/20220044 |
In this work, we are concerned with the modified KdV-sine-Gordon (mKdV-sG) equation. Breather solutions of the mKdV-sG equation are derived via using simplified Hirota's bilinear method. Moreover, we construct a new Lyapunov functional to present nonlinear stability of breather solutions to the mKdV-sG equation.
[1] | M. A. Alejo and C. Muñoz, Nonlinear stability of mKdV breathers, Communications in Mathematical Physics, 2013, 324(1), 233–262. doi: 10.1007/s00220-013-1792-0 |
[2] | S. C. Anco, S. Mohammad, T. Wolf et al., Generalized negative flows in hierarchies of integrable evolution equations, Journal of Nonlinear Mathematical Physics, 2016, 23, 573–606. |
[3] | M. A. Alejo, C. Muñoz and L. Vega, The Gardner equation and the-stability of the N-soliton solution of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 2013, 365, 195–212. |
[4] | M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Method for solving the Sine-Gordon equation, Physical Review Letters, 1973, 30(25), 1262–1264. doi: 10.1103/PhysRevLett.30.1262 |
[5] | D. Chen, D. Zhang and S. Deng, The Novel Multi-Soliton Solutions of the MKdV-Sine Gordon Equations, Journal of the Physical Society of Japan, 2002, 71(2), 658–659. doi: 10.1143/JPSJ.71.658 |
[6] | T. Dauxois, M. Peyrard and C. R. Willis, Localized breather-like solution in a discrete Klein-Gordon model and application to DNA, Physica D: Nonlinear Phenomena, 1992, 57, 267–282. doi: 10.1016/0167-2789(92)90003-6 |
[7] | T. Dauxois and M. Peyrard, Energy localization in nonlinear lattices Dauxois, Physical Review Letters, 1993, 70, 3935–3938. doi: 10.1103/PhysRevLett.70.3935 |
[8] | S. Flach and C. R. Willis, Movability of localized excitations in nonlinear discrete systems: A separatrix problem, Physical Review Letters, 1994, 72(12), 1777–1781. doi: 10.1103/PhysRevLett.72.1777 |
[9] | S. Flach, K. Kladko and C. R. Willis, Conditions on the existence of localized excitations in nonlinear discrete systems, Physical Review E, 1994, 50, 3134–3142. |
[10] | J. F. Gomes, G. S. Franca, G. R. De Melo et al., Negative even grade mKdV hierarchy and its soliton solutions, Journal of Physics A: Mathematical and Theoretical, 2009, 42(44), 445204. doi: 10.1088/1751-8113/42/44/445204 |
[11] | X. Geng, Y. Zhai and H. Dai, Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Advances in Mathematics, 2014, 263, 123–153. doi: 10.1016/j.aim.2014.06.013 |
[12] | A. Hussain et al., Lie Symmetry Analysis, Explicit Solutions and Conservation Laws of a Spatially Two-Dimensional Burgers-Huxley Equation, Symmetry, 2020, 12(1), 170. doi: 10.3390/sym12010170 |
[13] | R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. |
[14] | X. Hu, Y. Pan, J. Sun et al., Numerical evaluations of periodic wave solutions, integrable time discretization and their applications to the mKdV-sine-Gordon equation, Journal of Physics A Mathematical and Theoretical, 2020, 53(39), 394001. doi: 10.1088/1751-8121/aba85e |
[15] | C. K. R. T. Jones, R. Gardner and T. Kapitula, Stability of travelling waves for non-convex scalar viscous conservation laws, Communications on Pure and Applied Mathematics, 2010, 46(4), 505–526. |
[16] | K. Konno, W. Kameyama and H. Sanuki, Effect of Weak Dislocation Potential on Nonlinear Wave Propagation in Anharmonic Crystal, Journal of the Physical Society of Japan, 1974, 37, 171–176. doi: 10.1143/JPSJ.37.171 |
[17] | K. Konno and H. Kakuhata, Comment on "The Novel Multi-Soliton Solutions of the MKdV-Sine Gordon Equation", Journal of the Physical Society of Japan, 2003, 71(8), 2071. |
[18] | E. A. Kuznetsov, Solitons in a parametrically unstable plasma, Akademiia Nauk SSSR Doklady, 1977, 236, 575–577. |
[19] | Z. Liang, X. Jin and W. Ding, Infinitely many nonlocal symmetries and nonlocal conservation laws of the integrable modified KdV-sine-Gordon equation, Communications in Theoretical Physics, 2021, 73(5), 055003. doi: 10.1088/1572-9494/abe9ad |
[20] | J. Lin, X. Jin, X. Gao and S. Lou, Solitons on a Periodic Wave Background of the Modified KdV-Sine-Gordon Equation, Communications in Theoretical Physics, 2018, 70, 119–126. doi: 10.1088/0253-6102/70/2/119 |
[21] | P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on pure and applied mathematics, 1968, 21(5), 467–490. doi: 10.1002/cpa.3160210503 |
[22] | A. Mustafa Inc et al., Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations, Physica A: Statistical Mechanics and its Applications, 2018, 496, 371–383. doi: 10.1016/j.physa.2017.12.119 |
[23] | I. Mustafa et al., On the classification of conservation laws and soliton solutions of the long short-wave interaction system, Modern Physics Letters B, 2018, 1850202. |
[24] | W. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, Journal of Geometry and Physics, 2018, 132, 45–54. doi: 10.1016/j.geomphys.2018.05.024 |
[25] | Y. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Studies in Applied Mathematics, 1979, 60, 43–58. doi: 10.1002/sapm197960143 |
[26] | S. P. Popov, Numerical analysis of soliton solutions of the modified Korteweg-de Vries-Sine-Gordon equation, Computational Mathematics and Mathematical Physics, 2015, 55, 437–446. doi: 10.1134/S0965542515030136 |
[27] | S. P. Popov, Scattering of solitons by dislocations in the modified Korteweg de Vries-sine-Gordon equation, Computational Mathematics and Mathematical Physics, 2015, 55(12), 2014–2024. doi: 10.1134/S0965542515120143 |
[28] | D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, The Journal of the Australian Mathematical Society, Series B. Applied Mathematics, 1983, 25(1), 16–43. doi: 10.1017/S0334270000003891 |
[29] | Z. Qiao and W. Strampp, Negative order MKdV hierarchy and a new integrable Neumann-like system, Physica A: Statistical Mechanics and its Applications, 2002, 313(3–4), 365–380. doi: 10.1016/S0378-4371(02)00995-0 |
[30] | A. J. Sievers and S. Takeno, Intrinsic localized modes in anharmonic crystals, Physical Review Letters, 1988, 61, 970–973. doi: 10.1103/PhysRevLett.61.970 |
[31] | T. Su, G. Ding and Z. Wang, Explicit Solutions of the Coupled mKdV Equation by the Dressing Method via Local Riemann-Hilbert Problem, Applied Mathematics, 2016, 07(15), 1789–1797. doi: 10.4236/am.2016.715150 |
[32] | A. Seeger, H. Donth and A. Kochendörfer, Theorie derversetzungen in eindimensionalen atomreihen, Zeitschrift für Physik, 1953, 134(2), 173–193. doi: 10.1007/BF01329410 |
[33] | C. Wang, Z. Dai, S. Lin and G. Mu, Breather-type soliton and two-soliton solutions for mKdV equation, Applied Mathematics and Computation, 2010, 216, 341–343. doi: 10.1016/j.amc.2010.01.008 |
[34] | J. Weiss, The Sine-Gordon equations: complete and partial integrability, Journal of Mathematical Physics, 1984, 25, 2226–2235. doi: 10.1063/1.526415 |
[35] | A. M. Wazwaz, Multiple real and multiple complex solinton solutions for the integrable Sine-Gordon equation, Optik, 2018, 172, 622–627. doi: 10.1016/j.ijleo.2018.07.080 |
[36] | A. M. Wazwaz and L. Kaur, Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation, Nonlinear Dynamics, 2019, 95(3), 2209–2215. doi: 10.1007/s11071-018-4686-z |
[37] | A. M. Wazwaz, N-soliton solutions for the integrable modified KdV-sine-Gordon equation, Physica Scripta, 2014, 89(6), 065805. doi: 10.1088/0031-8949/89/6/065805 |
[38] | M. Wadati, The modified Korteweg-de Vries equation, Journal of the Physical Society of Japan, 1973, 34(5), 1289. doi: 10.1143/JPSJ.34.1289 |
[39] | J. Wang, L. Tian, B. Guo et al., Nonlinear stability of breather solutions to the coupled modified Korteweg-de Vries equations, Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105367. doi: 10.1016/j.cnsns.2020.105367 |
[40] | J. Wang, L. Tian and Y. Zhang, Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability, Physics Letters A, 2019, 383(15), 1689–1697. doi: 10.1016/j.physleta.2019.02.042 |
[41] | M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Communications on pure and applied mathematics, 1986, 39, 51–68. doi: 10.1002/cpa.3160390103 |
[42] | B. Xue, F. Li and G. Yang, Explicit solutions and conservation laws of the coupled modified korteweg-de vries equation, Physica Scripta, 2015, 90(8), 085204. doi: 10.1088/0031-8949/90/8/085204 |