2022 Volume 12 Issue 5
Article Contents

Jingqun Wang, Yingnan Zhang, Lixin Tian. NONLINEAR STABILITY OF BREATHER SOLUTIONS TO THE MODIFIED KDV-SINE-GORDON EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2043-2056. doi: 10.11948/20220044
Citation: Jingqun Wang, Yingnan Zhang, Lixin Tian. NONLINEAR STABILITY OF BREATHER SOLUTIONS TO THE MODIFIED KDV-SINE-GORDON EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2043-2056. doi: 10.11948/20220044

NONLINEAR STABILITY OF BREATHER SOLUTIONS TO THE MODIFIED KDV-SINE-GORDON EQUATION

  • Corresponding author: Email address: tianlx@ujs.edu.cn(L. Tian)
  • Fund Project: The authors were supported by the Natural Science Foundation for the Universities in Jiangsu Province (No. 21KJB110012)
  • In this work, we are concerned with the modified KdV-sine-Gordon (mKdV-sG) equation. Breather solutions of the mKdV-sG equation are derived via using simplified Hirota's bilinear method. Moreover, we construct a new Lyapunov functional to present nonlinear stability of breather solutions to the mKdV-sG equation.

    MSC: 35Q51, 35Q53
  • 加载中
  • [1] M. A. Alejo and C. Muñoz, Nonlinear stability of mKdV breathers, Communications in Mathematical Physics, 2013, 324(1), 233–262. doi: 10.1007/s00220-013-1792-0

    CrossRef Google Scholar

    [2] S. C. Anco, S. Mohammad, T. Wolf et al., Generalized negative flows in hierarchies of integrable evolution equations, Journal of Nonlinear Mathematical Physics, 2016, 23, 573–606.

    Google Scholar

    [3] M. A. Alejo, C. Muñoz and L. Vega, The Gardner equation and the-stability of the N-soliton solution of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 2013, 365, 195–212.

    Google Scholar

    [4] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Method for solving the Sine-Gordon equation, Physical Review Letters, 1973, 30(25), 1262–1264. doi: 10.1103/PhysRevLett.30.1262

    CrossRef Google Scholar

    [5] D. Chen, D. Zhang and S. Deng, The Novel Multi-Soliton Solutions of the MKdV-Sine Gordon Equations, Journal of the Physical Society of Japan, 2002, 71(2), 658–659. doi: 10.1143/JPSJ.71.658

    CrossRef Google Scholar

    [6] T. Dauxois, M. Peyrard and C. R. Willis, Localized breather-like solution in a discrete Klein-Gordon model and application to DNA, Physica D: Nonlinear Phenomena, 1992, 57, 267–282. doi: 10.1016/0167-2789(92)90003-6

    CrossRef Google Scholar

    [7] T. Dauxois and M. Peyrard, Energy localization in nonlinear lattices Dauxois, Physical Review Letters, 1993, 70, 3935–3938. doi: 10.1103/PhysRevLett.70.3935

    CrossRef Google Scholar

    [8] S. Flach and C. R. Willis, Movability of localized excitations in nonlinear discrete systems: A separatrix problem, Physical Review Letters, 1994, 72(12), 1777–1781. doi: 10.1103/PhysRevLett.72.1777

    CrossRef Google Scholar

    [9] S. Flach, K. Kladko and C. R. Willis, Conditions on the existence of localized excitations in nonlinear discrete systems, Physical Review E, 1994, 50, 3134–3142.

    Google Scholar

    [10] J. F. Gomes, G. S. Franca, G. R. De Melo et al., Negative even grade mKdV hierarchy and its soliton solutions, Journal of Physics A: Mathematical and Theoretical, 2009, 42(44), 445204. doi: 10.1088/1751-8113/42/44/445204

    CrossRef Google Scholar

    [11] X. Geng, Y. Zhai and H. Dai, Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Advances in Mathematics, 2014, 263, 123–153. doi: 10.1016/j.aim.2014.06.013

    CrossRef Google Scholar

    [12] A. Hussain et al., Lie Symmetry Analysis, Explicit Solutions and Conservation Laws of a Spatially Two-Dimensional Burgers-Huxley Equation, Symmetry, 2020, 12(1), 170. doi: 10.3390/sym12010170

    CrossRef Google Scholar

    [13] R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004.

    Google Scholar

    [14] X. Hu, Y. Pan, J. Sun et al., Numerical evaluations of periodic wave solutions, integrable time discretization and their applications to the mKdV-sine-Gordon equation, Journal of Physics A Mathematical and Theoretical, 2020, 53(39), 394001. doi: 10.1088/1751-8121/aba85e

    CrossRef Google Scholar

    [15] C. K. R. T. Jones, R. Gardner and T. Kapitula, Stability of travelling waves for non-convex scalar viscous conservation laws, Communications on Pure and Applied Mathematics, 2010, 46(4), 505–526.

    Google Scholar

    [16] K. Konno, W. Kameyama and H. Sanuki, Effect of Weak Dislocation Potential on Nonlinear Wave Propagation in Anharmonic Crystal, Journal of the Physical Society of Japan, 1974, 37, 171–176. doi: 10.1143/JPSJ.37.171

    CrossRef Google Scholar

    [17] K. Konno and H. Kakuhata, Comment on "The Novel Multi-Soliton Solutions of the MKdV-Sine Gordon Equation", Journal of the Physical Society of Japan, 2003, 71(8), 2071.

    Google Scholar

    [18] E. A. Kuznetsov, Solitons in a parametrically unstable plasma, Akademiia Nauk SSSR Doklady, 1977, 236, 575–577.

    Google Scholar

    [19] Z. Liang, X. Jin and W. Ding, Infinitely many nonlocal symmetries and nonlocal conservation laws of the integrable modified KdV-sine-Gordon equation, Communications in Theoretical Physics, 2021, 73(5), 055003. doi: 10.1088/1572-9494/abe9ad

    CrossRef Google Scholar

    [20] J. Lin, X. Jin, X. Gao and S. Lou, Solitons on a Periodic Wave Background of the Modified KdV-Sine-Gordon Equation, Communications in Theoretical Physics, 2018, 70, 119–126. doi: 10.1088/0253-6102/70/2/119

    CrossRef Google Scholar

    [21] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on pure and applied mathematics, 1968, 21(5), 467–490. doi: 10.1002/cpa.3160210503

    CrossRef Google Scholar

    [22] A. Mustafa Inc et al., Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations, Physica A: Statistical Mechanics and its Applications, 2018, 496, 371–383. doi: 10.1016/j.physa.2017.12.119

    CrossRef Google Scholar

    [23] I. Mustafa et al., On the classification of conservation laws and soliton solutions of the long short-wave interaction system, Modern Physics Letters B, 2018, 1850202.

    Google Scholar

    [24] W. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, Journal of Geometry and Physics, 2018, 132, 45–54. doi: 10.1016/j.geomphys.2018.05.024

    CrossRef Google Scholar

    [25] Y. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Studies in Applied Mathematics, 1979, 60, 43–58. doi: 10.1002/sapm197960143

    CrossRef Google Scholar

    [26] S. P. Popov, Numerical analysis of soliton solutions of the modified Korteweg-de Vries-Sine-Gordon equation, Computational Mathematics and Mathematical Physics, 2015, 55, 437–446. doi: 10.1134/S0965542515030136

    CrossRef Google Scholar

    [27] S. P. Popov, Scattering of solitons by dislocations in the modified Korteweg de Vries-sine-Gordon equation, Computational Mathematics and Mathematical Physics, 2015, 55(12), 2014–2024. doi: 10.1134/S0965542515120143

    CrossRef Google Scholar

    [28] D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, The Journal of the Australian Mathematical Society, Series B. Applied Mathematics, 1983, 25(1), 16–43. doi: 10.1017/S0334270000003891

    CrossRef Google Scholar

    [29] Z. Qiao and W. Strampp, Negative order MKdV hierarchy and a new integrable Neumann-like system, Physica A: Statistical Mechanics and its Applications, 2002, 313(3–4), 365–380. doi: 10.1016/S0378-4371(02)00995-0

    CrossRef Google Scholar

    [30] A. J. Sievers and S. Takeno, Intrinsic localized modes in anharmonic crystals, Physical Review Letters, 1988, 61, 970–973. doi: 10.1103/PhysRevLett.61.970

    CrossRef Google Scholar

    [31] T. Su, G. Ding and Z. Wang, Explicit Solutions of the Coupled mKdV Equation by the Dressing Method via Local Riemann-Hilbert Problem, Applied Mathematics, 2016, 07(15), 1789–1797. doi: 10.4236/am.2016.715150

    CrossRef Google Scholar

    [32] A. Seeger, H. Donth and A. Kochendörfer, Theorie derversetzungen in eindimensionalen atomreihen, Zeitschrift für Physik, 1953, 134(2), 173–193. doi: 10.1007/BF01329410

    CrossRef Google Scholar

    [33] C. Wang, Z. Dai, S. Lin and G. Mu, Breather-type soliton and two-soliton solutions for mKdV equation, Applied Mathematics and Computation, 2010, 216, 341–343. doi: 10.1016/j.amc.2010.01.008

    CrossRef Google Scholar

    [34] J. Weiss, The Sine-Gordon equations: complete and partial integrability, Journal of Mathematical Physics, 1984, 25, 2226–2235. doi: 10.1063/1.526415

    CrossRef Google Scholar

    [35] A. M. Wazwaz, Multiple real and multiple complex solinton solutions for the integrable Sine-Gordon equation, Optik, 2018, 172, 622–627. doi: 10.1016/j.ijleo.2018.07.080

    CrossRef Google Scholar

    [36] A. M. Wazwaz and L. Kaur, Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation, Nonlinear Dynamics, 2019, 95(3), 2209–2215. doi: 10.1007/s11071-018-4686-z

    CrossRef Google Scholar

    [37] A. M. Wazwaz, N-soliton solutions for the integrable modified KdV-sine-Gordon equation, Physica Scripta, 2014, 89(6), 065805. doi: 10.1088/0031-8949/89/6/065805

    CrossRef Google Scholar

    [38] M. Wadati, The modified Korteweg-de Vries equation, Journal of the Physical Society of Japan, 1973, 34(5), 1289. doi: 10.1143/JPSJ.34.1289

    CrossRef Google Scholar

    [39] J. Wang, L. Tian, B. Guo et al., Nonlinear stability of breather solutions to the coupled modified Korteweg-de Vries equations, Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105367. doi: 10.1016/j.cnsns.2020.105367

    CrossRef Google Scholar

    [40] J. Wang, L. Tian and Y. Zhang, Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability, Physics Letters A, 2019, 383(15), 1689–1697. doi: 10.1016/j.physleta.2019.02.042

    CrossRef Google Scholar

    [41] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Communications on pure and applied mathematics, 1986, 39, 51–68. doi: 10.1002/cpa.3160390103

    CrossRef Google Scholar

    [42] B. Xue, F. Li and G. Yang, Explicit solutions and conservation laws of the coupled modified korteweg-de vries equation, Physica Scripta, 2015, 90(8), 085204. doi: 10.1088/0031-8949/90/8/085204

    CrossRef Google Scholar

Article Metrics

Article views(2461) PDF downloads(476) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint