Citation: | Meng Sun, Pingrun Li, Songwei Bai. A NEW EFFICIENT METHOD FOR TWO CLASSES OF SINGULAR CONVOLUTION INTEGRAL EQUATIONS OF NON-NORMAL TYPE WITH CAUCHY KERNEL[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2057-2074. doi: 10.11948/20220165 |
In this article, our task is to study the existence and Noethericity of solution for two classes of singular convolution integral equations with Cauchy kernels in the non-normal type case. To obtain the conditions of solvability for such equations, we establish regularity theory of solvability. By means of the theory of Fourier analysis, we will transform the equations into boundary value problems for holomorphic functions. The holomorphic solutions and conditions of solvability are obtained by using the method of complex analysis in class {0}. Moreover, we also discuss the asymptotic property of solution near nodes. Therefore, our work generalizes and improves the theories of integral equations and the classical boundary value problems for holomorphic functions.
[1] | R. Abreu-Blaya, J. Bory-Reyes, F. Brackx, H. De-Schepper and F. Sommen, Cauchy integral formulae in Hermitian Quaternionic Clifford Analysis, Complex Anal. Oper. Theory, 2012, 6, 971–983. doi: 10.1007/s11785-011-0168-8 |
[2] | H. Begehr and T. Vaitekhovich, Harmonic boundary value problems in half disc and half ring, Functions et Approximation, 2009, 40(2), 251–282. |
[3] | Z. Blocki, Suita conjecture and Ohsawa-Takegoshi extension theorem, Invent. Math., 2013, 193, 149–158. doi: 10.1007/s00222-012-0423-2 |
[4] | I. Belmoulouda and A. Memoub, On the solvability of a class of nonlinear singular parabolic equation with integral boundary condition, Appl. Math. Comput., 2020, 373, 124999. doi: 10.1016/j.amc.2019.124999 |
[5] | L. H. Chuan, N. V. Mau and N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117–137. doi: 10.1080/17476930701619782 |
[6] | J. Colliander, M. Keel, G. Staffilani, et al., Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2 |
[7] | H. Du and J. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308–314. doi: 10.1016/j.jmaa.2008.07.037 |
[8] | M. C. De-Bonis and C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219, 1391–1410. doi: 10.1016/j.amc.2012.08.022 |
[9] | R. V. Duduchava, Integral equations of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–78. doi: 10.1002/mana.19770790108 |
[10] | F. D. Gahov and U. I. Cherskiy, Integral Equations of Convolution Type, Nauka Moscow, 1980. |
[11] | C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 2014, 420, 1–19. doi: 10.1016/j.jmaa.2014.05.064 |
[12] | Y. F. Gong, L. T. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435–444. doi: 10.1016/j.jmaa.2008.12.021 |
[13] | L. Hörmander, The analysis of Linear Partial Differential Operators. I., Reprint of the second (1990) edition, Springer-Verlag, Berlin, 2003. |
[14] | K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. doi: 10.1016/j.cam.2019.112531 |
[15] | G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, London: Kluwer Academic Publishers, 2004. |
[16] | P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455–5471. doi: 10.1016/j.jde.2018.07.056 |
[17] | P. Li and G. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185–194. doi: 10.1016/j.amc.2016.03.004 |
[18] | P. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314–323. |
[19] | P. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67–73. doi: 10.1080/17476933.2015.1057712 |
[20] | P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601. |
[21] | P. Li, The solvability and explicit solutions of singular integral-differential equations of non-normal type via Riemann-Hilbert problem, J. Comput. Appl. Math., 2020, 374(2), 112759. |
[22] | P. Li, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput., 2019, 9(3), 1071–1082. |
[23] | P. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023–1038. doi: 10.1080/01630563.2019.1586721 |
[24] | P. Li, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344–345, 116–127. doi: 10.1016/j.amc.2018.09.065 |
[25] | P. Li, Some classes of singular integral equations of convolution type in the class of exponentially increasing functions, J. Inequal. Appl., 2017, 2017, 307. doi: 10.1186/s13660-017-1580-z |
[26] | P. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631–2643. doi: 10.1002/mma.5538 |
[27] | P. Li, Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem, Adv. Difference Equ., 2017, 2017, 360. doi: 10.1186/s13662-017-1413-x |
[28] | P. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 2015, 40. doi: 10.1186/s13661-015-0301-0 |
[29] | P. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643 |
[30] | P. Li, N. Zhang, M. Wang and Y. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., 2021. DOI: 10.1080/17476933.2021.2009817. |
[31] | P. Li, S. Bai, M. Sun and N. Zhang, Solving convolution singular integral equations with reflection and translation shifts utilizing Riemann-Hilbert approach, J. Appl. Anal. Comput., 2022, 12(2), 551–567. |
[32] | J. Lu, Boundary Value Problems for Analytic Functions, Singapore, World Sci., 2004. |
[33] | N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002. |
[34] | T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel, Integral Equations Operator Theory, 2014, 78, 233–248. doi: 10.1007/s00020-013-2104-y |
[35] | E. Najafi, Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations, J. Comput. Appl. Math., 2020, 368, 112538. doi: 10.1016/j.cam.2019.112538 |
[36] | E. K. Praha and V. M. Valencia, Solving singular convolution equations using inverse Fast Fourier Transform, Applications of Mathematics, 2012, 57(5), 543–550. doi: 10.1007/s10492-012-0032-9 |
[37] | G. Ren, U. Kaehler, J. Shi and C. Liu, Hardy-Littlewood inequalities for fractional derivatives of invariant harmonic functions, Complex Anal. Oper. Theory, 2012, 6(2), 373–396. doi: 10.1007/s11785-010-0123-0 |
[38] | N. M. Tuan and N. T. Thu-Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369, 712–718. doi: 10.1016/j.jmaa.2010.04.019 |
[39] | Q. Wen and Q. Du, An approximate numerical method for solving Cauchy singular integral equations composed of multiple implicit parameter functions with unknown integral limits in contact mechanics, J. Math. Anal. Appl., 2020, 482, 123530. doi: 10.1016/j.jmaa.2019.123530 |
[40] | P. Wöjcik, M. A. Sheshko, et al., Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel, Differential Equations, 2013, 49(2), 198–209. doi: 10.1134/S0012266113020067 |