2022 Volume 12 Issue 5
Article Contents

Meng Sun, Pingrun Li, Songwei Bai. A NEW EFFICIENT METHOD FOR TWO CLASSES OF SINGULAR CONVOLUTION INTEGRAL EQUATIONS OF NON-NORMAL TYPE WITH CAUCHY KERNEL[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2057-2074. doi: 10.11948/20220165
Citation: Meng Sun, Pingrun Li, Songwei Bai. A NEW EFFICIENT METHOD FOR TWO CLASSES OF SINGULAR CONVOLUTION INTEGRAL EQUATIONS OF NON-NORMAL TYPE WITH CAUCHY KERNEL[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2057-2074. doi: 10.11948/20220165

A NEW EFFICIENT METHOD FOR TWO CLASSES OF SINGULAR CONVOLUTION INTEGRAL EQUATIONS OF NON-NORMAL TYPE WITH CAUCHY KERNEL

  • In this article, our task is to study the existence and Noethericity of solution for two classes of singular convolution integral equations with Cauchy kernels in the non-normal type case. To obtain the conditions of solvability for such equations, we establish regularity theory of solvability. By means of the theory of Fourier analysis, we will transform the equations into boundary value problems for holomorphic functions. The holomorphic solutions and conditions of solvability are obtained by using the method of complex analysis in class {0}. Moreover, we also discuss the asymptotic property of solution near nodes. Therefore, our work generalizes and improves the theories of integral equations and the classical boundary value problems for holomorphic functions.

    MSC: 45E10, 45E05, 30E25
  • 加载中
  • [1] R. Abreu-Blaya, J. Bory-Reyes, F. Brackx, H. De-Schepper and F. Sommen, Cauchy integral formulae in Hermitian Quaternionic Clifford Analysis, Complex Anal. Oper. Theory, 2012, 6, 971–983. doi: 10.1007/s11785-011-0168-8

    CrossRef Google Scholar

    [2] H. Begehr and T. Vaitekhovich, Harmonic boundary value problems in half disc and half ring, Functions et Approximation, 2009, 40(2), 251–282.

    Google Scholar

    [3] Z. Blocki, Suita conjecture and Ohsawa-Takegoshi extension theorem, Invent. Math., 2013, 193, 149–158. doi: 10.1007/s00222-012-0423-2

    CrossRef Google Scholar

    [4] I. Belmoulouda and A. Memoub, On the solvability of a class of nonlinear singular parabolic equation with integral boundary condition, Appl. Math. Comput., 2020, 373, 124999. doi: 10.1016/j.amc.2019.124999

    CrossRef Google Scholar

    [5] L. H. Chuan, N. V. Mau and N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117–137. doi: 10.1080/17476930701619782

    CrossRef Google Scholar

    [6] J. Colliander, M. Keel, G. Staffilani, et al., Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2

    CrossRef Google Scholar

    [7] H. Du and J. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308–314. doi: 10.1016/j.jmaa.2008.07.037

    CrossRef Google Scholar

    [8] M. C. De-Bonis and C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219, 1391–1410. doi: 10.1016/j.amc.2012.08.022

    CrossRef Google Scholar

    [9] R. V. Duduchava, Integral equations of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–78. doi: 10.1002/mana.19770790108

    CrossRef Google Scholar

    [10] F. D. Gahov and U. I. Cherskiy, Integral Equations of Convolution Type, Nauka Moscow, 1980.

    Google Scholar

    [11] C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 2014, 420, 1–19. doi: 10.1016/j.jmaa.2014.05.064

    CrossRef Google Scholar

    [12] Y. F. Gong, L. T. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435–444. doi: 10.1016/j.jmaa.2008.12.021

    CrossRef Google Scholar

    [13] L. Hörmander, The analysis of Linear Partial Differential Operators. I., Reprint of the second (1990) edition, Springer-Verlag, Berlin, 2003.

    Google Scholar

    [14] K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531. doi: 10.1016/j.cam.2019.112531

    CrossRef Google Scholar

    [15] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, London: Kluwer Academic Publishers, 2004.

    Google Scholar

    [16] P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455–5471. doi: 10.1016/j.jde.2018.07.056

    CrossRef Google Scholar

    [17] P. Li and G. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185–194. doi: 10.1016/j.amc.2016.03.004

    CrossRef Google Scholar

    [18] P. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314–323.

    Google Scholar

    [19] P. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67–73. doi: 10.1080/17476933.2015.1057712

    CrossRef Google Scholar

    [20] P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601.

    Google Scholar

    [21] P. Li, The solvability and explicit solutions of singular integral-differential equations of non-normal type via Riemann-Hilbert problem, J. Comput. Appl. Math., 2020, 374(2), 112759.

    Google Scholar

    [22] P. Li, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput., 2019, 9(3), 1071–1082.

    Google Scholar

    [23] P. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023–1038. doi: 10.1080/01630563.2019.1586721

    CrossRef Google Scholar

    [24] P. Li, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344–345, 116–127. doi: 10.1016/j.amc.2018.09.065

    CrossRef Google Scholar

    [25] P. Li, Some classes of singular integral equations of convolution type in the class of exponentially increasing functions, J. Inequal. Appl., 2017, 2017, 307. doi: 10.1186/s13660-017-1580-z

    CrossRef Google Scholar

    [26] P. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631–2643. doi: 10.1002/mma.5538

    CrossRef Google Scholar

    [27] P. Li, Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem, Adv. Difference Equ., 2017, 2017, 360. doi: 10.1186/s13662-017-1413-x

    CrossRef Google Scholar

    [28] P. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 2015, 40. doi: 10.1186/s13661-015-0301-0

    CrossRef Google Scholar

    [29] P. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643

    CrossRef Google Scholar

    [30] P. Li, N. Zhang, M. Wang and Y. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., 2021. DOI: 10.1080/17476933.2021.2009817.

    CrossRef Google Scholar

    [31] P. Li, S. Bai, M. Sun and N. Zhang, Solving convolution singular integral equations with reflection and translation shifts utilizing Riemann-Hilbert approach, J. Appl. Anal. Comput., 2022, 12(2), 551–567.

    Google Scholar

    [32] J. Lu, Boundary Value Problems for Analytic Functions, Singapore, World Sci., 2004.

    Google Scholar

    [33] N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.

    Google Scholar

    [34] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel, Integral Equations Operator Theory, 2014, 78, 233–248. doi: 10.1007/s00020-013-2104-y

    CrossRef Google Scholar

    [35] E. Najafi, Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations, J. Comput. Appl. Math., 2020, 368, 112538. doi: 10.1016/j.cam.2019.112538

    CrossRef Google Scholar

    [36] E. K. Praha and V. M. Valencia, Solving singular convolution equations using inverse Fast Fourier Transform, Applications of Mathematics, 2012, 57(5), 543–550. doi: 10.1007/s10492-012-0032-9

    CrossRef Google Scholar

    [37] G. Ren, U. Kaehler, J. Shi and C. Liu, Hardy-Littlewood inequalities for fractional derivatives of invariant harmonic functions, Complex Anal. Oper. Theory, 2012, 6(2), 373–396. doi: 10.1007/s11785-010-0123-0

    CrossRef Google Scholar

    [38] N. M. Tuan and N. T. Thu-Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369, 712–718. doi: 10.1016/j.jmaa.2010.04.019

    CrossRef Google Scholar

    [39] Q. Wen and Q. Du, An approximate numerical method for solving Cauchy singular integral equations composed of multiple implicit parameter functions with unknown integral limits in contact mechanics, J. Math. Anal. Appl., 2020, 482, 123530. doi: 10.1016/j.jmaa.2019.123530

    CrossRef Google Scholar

    [40] P. Wöjcik, M. A. Sheshko, et al., Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel, Differential Equations, 2013, 49(2), 198–209. doi: 10.1134/S0012266113020067

    CrossRef Google Scholar

Article Metrics

Article views(2219) PDF downloads(421) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint