Citation: | Wenyi Qin, Peng Zhou. A REVIEW ON THE DYNAMICS OF TWO SPECIES COMPETITIVE ODE AND PARABOLIC SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2075-2109. doi: 10.11948/20220196 |
This paper is devoted to a review on the dynamics of two species competition systems including the classical ODE, reaction-diffusion as well as reaction-diffusion-advection models. The primary purpose is to illustrate the effect of competition intensity, movement (diffusion and/or advection) and spatial variation on the population dynamics. Specific topics include Lotka-Volterra competition models in heterogeneous environments and in advective environments, linear second order eigenvalue problems, and the evolution of movement strategy. Several fundamental tools such as the monotone theory, the principal eigenvalue theory (for single equations or systems) and some technical approaches are introduced. Some recent developments are discussed and also several problems that deserve future investigation are proposed.
[1] | S. Ahmad and A. C. Lazer, Asymptotic behavior of solutions of periodic competition diffusion system, Nonlinear Anal., 1989, 13, 263–284. doi: 10.1016/0362-546X(89)90054-0 |
[2] | I. Averill, K. Y. Lam and Y. Lou, The role of advection in a two-species competition model: A Bifurcation Approach, Memoirs of AMS, 2017, 245 (#1161). |
[3] | I. Averill, Y. Lou and D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dyn., 2012, 6, 117–130. doi: 10.1080/17513758.2010.529169 |
[4] | X. Bai and X. He, Asymptotic behavior of the principal eigenvalue for cooperative periodic-parabolic systems and applications, J. Differential Equations, 2020, 269, 9868–9903. doi: 10.1016/j.jde.2020.06.067 |
[5] | X. Bai, X. He and W. Ni, Dynamics of a periodic-parabolic Lotka-Volterra competition-diffusion system in heterogeneous environments, accepted by JEMS, 2022. |
[6] | X. Bai and F. Li, Global dynamics of a competition model with nonlocal dispersal II: The full system, J. Differential Equations, 2015, 258, 2655–2685. doi: 10.1016/j.jde.2014.12.014 |
[7] | X. Bai and F. Li, Classification of global dynamics of competition models with nonlocal dispersal I: Symmetric kernels, Calc. Var. Partial Differential Equations, 2018, 57, Paper No. 144, 35pp. |
[8] | X. Bai and F. Li, Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small, Discrete Contin. Dyn. Syst., 2020, 40, 3075–3092. doi: 10.3934/dcds.2020035 |
[9] | M. Ballyk, L. Dung, D. A. Jones and H. Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 1998, 59, 573–596. doi: 10.1137/S0036139997325345 |
[10] | F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments, Canad. Appl. Math. Quart., 1995, 3, 379–397. |
[11] | H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 2005, 253, 451-480. doi: 10.1007/s00220-004-1201-9 |
[12] | A. Bezuglyy and Y. Lou, Reaction-diffusion models with large advection coefficients, Appl. Anal., 2010, 89, 983–1004. doi: 10.1080/00036810903479723 |
[13] | R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003. |
[14] | R. S. Cantrell, C. Cosner and Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 2006, 204, 199–214. doi: 10.1016/j.mbs.2006.09.003 |
[15] | R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sec. A, 2007, 137, 497–518. doi: 10.1017/S0308210506000047 |
[16] | R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and ideal free distribution, Math. Biosci. Eng., 2010, 7, 17–36. doi: 10.3934/mbe.2010.7.17 |
[17] | R. S. Cantrell and K. Y. Lam, On the evolution of slow dispersal in multispecies communities, SIAM J. Math. Anal., 2021, 53, 4933–4964. doi: 10.1137/20M1361419 |
[18] | S. Chen, J. Shi, Z. Shuai and Y. Wu, Global dynamics of a Lotka-Volterra competition patch model, Nonlinearity, 2022, 35, 817–842. doi: 10.1088/1361-6544/ac3c2e |
[19] | S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calc. Var. Partial Differential Equations, 2020, 59, Paper No. 33, 19pp. |
[20] | X. Chen, R. Hambrock and Y. Lou, Evolution of conditional dispersal: a reaction-diffusion-advection model, J. Math. Biol., 2008, 57, 361–386. doi: 10.1007/s00285-008-0166-2 |
[21] | X. Chen, K. Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 2012, 32, 3841–3859. doi: 10.3934/dcds.2012.32.3841 |
[22] | X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 2008, 57, 627–658. doi: 10.1512/iumj.2008.57.3204 |
[23] | X. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 2012, 61, 45–80. doi: 10.1512/iumj.2012.61.4518 |
[24] | C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 2014, 34, 1701–1745. doi: 10.3934/dcds.2014.34.1701 |
[25] | C. Cosner and Y. Lou, Does movement toward better environments always benefit a population? J. Math. Anal. Appl., 2003, 277, 489–503. doi: 10.1016/S0022-247X(02)00575-9 |
[26] | E. N. Dancer, Positivity of maps and applications, Topological nonlinear analysis, 303-340, Prog. Nonlinear Differential Equations Appl., 15, edited by Matzeu and Vignoli, Birkhauser, Boston, 1995. |
[27] | E. N. Dancer, On the principal eigenvalue of linear cooperating elliptic system with small diffusion, J. Evol. Equ., 2009, 9, 419–428. doi: 10.1007/s00028-009-0011-0 |
[28] | E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion I. General existence results, Nonlinear Anal., 1995, 24, 337–357. doi: 10.1016/0362-546X(94)E0063-M |
[29] | E. N. Dancer, K. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 2012, 364, 961–1005. doi: 10.1090/S0002-9947-2011-05488-7 |
[30] | D. de Figueiredo and E. Mitidieri, Maximum principles for linear elliptic systems, Rend. Istit. Mat. Univ. Trieste, 1990, 22, 36–66. |
[31] | P. DeMottoni, Qualitative analysis for some quasilinear parabolic systems, Institute of Math., Polish Academy Sci., zam, 1979, 190, 11–79. |
[32] | A. Devinatz, R. Ellis and A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II, Indiana Univ. Math. J., 1973, 23, 991–1011. |
[33] | U. Dieckmann, Can adaptive dynamics invade?, Trends Ecol. Evol., 1997, 12, 128–131. doi: 10.1016/S0169-5347(97)01004-5 |
[34] | J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: a reaction-diffusion model, J. Math. Biol., 1998, 37, 61–83. doi: 10.1007/s002850050120 |
[35] | Y. Du and S. B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 2010, 42, 1305–1333. doi: 10.1137/090775105 |
[36] | S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat selection in birds, Acta Biotheretica, 1970, 19, 16–36. |
[37] | A. Friedman, The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives, Indiana Univ. Math. J., 1972/1973, 22, 1005–1015. |
[38] | W. Gan, Y. Shao, J. Wang and F. Xu, Global dynamics of a general competitive reaction-diffusion-advection system in one dimensional environments, Nonlinear Anal. Real World Appl., 2022, 66, Paper No. 103523, 9pp. |
[39] | F. Gantmacher, Theory of Matrices, AMS Chelsea publishing, New York, 1959. |
[40] | R. Gejji, Y. Lou, D. Munther and J. Peyton, Evolutionary convergence to ideal free dispersal strategies and coexistence, Bull. Math. Biol., 2012, 74, 257–299. doi: 10.1007/s11538-011-9662-4 |
[41] | T. Godoy, J. P. Gossez and S. Paczka, On the asymptotic behavior of the principal eigenvalues of some elliptic problems, Ann. Mat. Pur. Appl., 2010, 189, 497–521. doi: 10.1007/s10231-009-0120-y |
[42] | C. Gui and Y. Lou, Uniqueness and nonuniqueness of positive steady states in the Lotka-Volterra competition model, Comm. Pure. Appl. Math., 1994, 47, 1571–1594. doi: 10.1002/cpa.3160471203 |
[43] | Q. Guo, X. He and W. Ni, On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments, J. Math. Biol., 2020, 81, 403–433. doi: 10.1007/s00285-020-01507-9 |
[44] | Q. Guo, X. He and W. Ni, Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments, Discrete Contin. Dyn. Syst., 2020, 40, 6547–6573. doi: 10.3934/dcds.2020290 |
[45] | R. Hambrock and Y. Lou, The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull. Math. Biol., 2009, 71, 1793–1817. doi: 10.1007/s11538-009-9425-7 |
[46] | W. Hao, K. Y. Lam and Y. Lou, Ecological and evolutionary dynamics in advective environments: critical domain size and boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 2021, 26, 367–400. |
[47] | G. Hardin, The competitive exclusion principle, Science, 1960, 131, 1292–1297. doi: 10.1126/science.131.3409.1292 |
[48] | A. Hastings, Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol., 1983, 24, 244–251. doi: 10.1016/0040-5809(83)90027-8 |
[49] | X. He and W. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 2013, 254, 528–546. doi: 10.1016/j.jde.2012.08.032 |
[50] | X. He and W. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: The general case, J. Differential Equations, 2013, 254, 4088–4108. doi: 10.1016/j.jde.2013.02.009 |
[51] | X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I, Comm. Pure. Appl. Math., 2016, 69, 981–1014. doi: 10.1002/cpa.21596 |
[52] | X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 2016, 55, Art. 25, 20 pp. |
[53] | X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, III, Calc. Var. Partial Differential Equations, 2017, 56, Art. 132, 26 pp. |
[54] | A. E. Hershey, J. Pastor, B. J. Peterson and G. W. Kling, Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river, Ecology, 1993, 74, 2315–2325. doi: 10.2307/1939584 |
[55] | P. Hess, Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics Series, 247. Longman, Harlow, UK; Wiley, New York, 1991. |
[56] | P. Hess and A. C. Lazer, On an abstract competition model and applications, Nonlinear Analysis T. M. A., 1991, 16, 917–940. doi: 10.1016/0362-546X(91)90097-K |
[57] | M. W. Hirsch and H. Smith, Monotone dynamical systems. Handbook of differential equations: ordinary differential equations. Vol. II, 239-357, Elsevier B. V., Amsterdam, 2005. |
[58] | S. B. Hsu, H. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 1996, 348, 4083–4094. doi: 10.1090/S0002-9947-96-01724-2 |
[59] | S. B. Hsu, P. Waltman and S. Ellermeyer, A remark on the global asymptotic stability of a dynamical system modeling two species competition, Hiroshima Math. J., 1994, 24, 435–445. |
[60] | V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 2005, 211, 135–161. doi: 10.1016/j.jde.2004.06.003 |
[61] | V. Hutson, K. Mischaikow and P. Pol$\acute{a}\breve{c}$ik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 2001, 43, 501–533. doi: 10.1007/s002850100106 |
[62] | M. Iida, T. Muramatsu, H. Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system, Japan J. Indust. Appl. Math., 1998, 15, 233–252. doi: 10.1007/BF03167402 |
[63] | D. Jiang, K. Y. Lam and Y. Lou, Competitive exclusion in a nonlocal reaction-diffusion-advection model of phytoplankton populations, Nonlinear Anal. Real World Appl., 2021, 61, Paper No. 103350, 15pp. |
[64] | D. Jiang, K. Y. Lam, Y. Lou and Z. Wang, Monotonicity and global dynamics of a nonlocal two-species phytoplankton model, SIAM J. Appl. Math., 2019, 79, 716–742. doi: 10.1137/18M1221588 |
[65] | H. Jiang, K. Y. Lam and Y. Lou, Are two-patch models sufficient? The evolution of dispersal and topology of river network modules, Bull. Math. Biol., 2020, 82, Paper No. 131, 42pp. |
[66] | H. Jiang, K. Y. Lam and Y. Lou, Three-patch models for the evolution of dispersal in advective environments: varying drift and network topology, Bull. Math. Biol., 2021, 83, Paper No. 109, 46pp. |
[67] | J. Jiang, X. Liang, and X. Zhao, Saddle-point behavior for monotone semiflows and reaction-diffusion models, J. Differential Equations, 2004, 203, 313–330. doi: 10.1016/j.jde.2004.05.002 |
[68] | S. Kowalevski, Zur theorie der partiellen differentialgleichung, J. Reine Angew. Math., 1875, 80, 1–32. |
[69] | K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 1985, 58, 15–21. doi: 10.1016/0022-0396(85)90020-8 |
[70] | M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N. S. ), 1948, 3, 3–95. |
[71] | N. Lakos, Existence of steady-state solutions for a one-predator two-prey system, SIAM J. Math. Anal., 1990, 21, 647–659. doi: 10.1137/0521034 |
[72] | K. Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations, 2011, 250, 161–181. doi: 10.1016/j.jde.2010.08.028 |
[73] | K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal., 2012, 44, 1808–1830. doi: 10.1137/100819758 |
[74] | K. Y. Lam, S. Liu and Y. Lou, Selected topics on reaction-diffusion-advection models from spatial ecology, Math. Appl. Sci. Eng., 2020, 1, 91–206. |
[75] | K. Y. Lam and Y. Lou, Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dynam. Differential Equations, 2016, 28, 29–48. doi: 10.1007/s10884-015-9504-4 |
[76] | K. Y. Lam and Y. Lou, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 2014, 76, 261–291. doi: 10.1007/s11538-013-9901-y |
[77] | K. Y. Lam and Y. Lou, Evolution of conditional dispersal: evolutionarily stable strategies in spatial models, J. Math. Biol., 2014, 68, 851–877. doi: 10.1007/s00285-013-0650-1 |
[78] | K. Y. Lam and Y. Lou, Persistence, competition and evolution. The dynamics of biological systems, Math. Planet Earth, Springer, Cham., 2019, 205–238, . |
[79] | K. Y. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 2015, 9, 188–212. doi: 10.1080/17513758.2014.969336 |
[80] | K. Y. Lam and D. Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. Amer. Math. Soc., 2016, 144, 1153–1159. |
[81] | K. Y. Lam and N. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 2010, 28, 1051–1067. doi: 10.3934/dcds.2010.28.1051 |
[82] | K. Y. Lam and N. Ni, Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 2012, 72, 1695–1712. doi: 10.1137/120869481 |
[83] | K. Y. Lam and N. Ni, Advection-mediated competition in general environments, J. Differential Equations, 2014, 257, 3466–3500. doi: 10.1016/j.jde.2014.06.019 |
[84] | F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with nonlocal dispersal I: the shadow system, J. Math. Anal. Appl., 2014, 412, 485–497. doi: 10.1016/j.jmaa.2013.10.071 |
[85] | K. Li and F. Xu, Global dynamics of a population model from river ecology, J. Appl. Anal. Comput., 2020, 10, 1698–1707. |
[86] | Z. Li, B. Dai and X. Dong, Global stability of nonhomogeneous steady-state solution in a Lotka-Volterra competition-diffusion-advection model, Appl. Math. Lett., 2020, 107, 106480, 8pp. doi: 10.1016/j.aml.2020.106480 |
[87] | X. Liang and J. Jiang, On the finite-dimensional dynamical systems with limited competition, Trans. Amer. Math. Soc., 2002, 354, 3535–3554. doi: 10.1090/S0002-9947-02-03032-5 |
[88] | S. Liu and Y. Lou, A functional approach towards eigenvalue problems associated with incompressible flow, Discrete Contin. Dyn. Syst., 2020, 40, 3715–3736. doi: 10.3934/dcds.2020028 |
[89] | S. Liu and Y. Lou, Ecological and evolutionary dynamics in periodic and advective habitats, 2021, in press. |
[90] | S. Liu, Y. Lou, R. Peng and M. Zhou, Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator I: Large advection, SIAM J. Math. Anal., 2021, 53, 5243–5277. doi: 10.1137/20M1379563 |
[91] | S. Liu, Y. Lou, R. Peng and M. Zhou, Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator II: Small diffusion, Trans. Amer. Math. Soc., 2021, 374, 4895–4930. doi: 10.1090/tran/8364 |
[92] | Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 2006, 223, 400–426. doi: 10.1016/j.jde.2005.05.010 |
[93] | Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, Tutorials in mathematical biosciences. Ⅳ, 171–205, Lecture Notes in Math. 1922, Math. Biosci. Subser., Springer, Berlin, 2008. |
[94] | Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 2014, 69, 1319–1342. doi: 10.1007/s00285-013-0730-2 |
[95] | Y. Lou and D. Munther, Dynamics of a three species competition model, Discrete Contin. Dyn. Syst., 2012, 32, 3099–3131. doi: 10.3934/dcds.2012.32.3099 |
[96] | Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection in population genetics, J. Differential Equations, 2004, 204, 292–322. doi: 10.1016/j.jde.2004.01.009 |
[97] | Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 1996, 131, 79–131. doi: 10.1006/jdeq.1996.0157 |
[98] | Y. Lou, H. Nie, and Y. Wang, Coexistence and bistability of a competition model in open advective evironments, Math. Biosci., 2018, 306, 10–19. doi: 10.1016/j.mbs.2018.09.013 |
[99] | Y. Lou, D. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 2016, 36, 953–969. |
[100] | Y. Lou, X. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 2019, 121, 47–82. doi: 10.1016/j.matpur.2018.06.010 |
[101] | Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differential Equations, 2015, 259, 141–171. doi: 10.1016/j.jde.2015.02.004 |
[102] | F. Lutscher, M. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 2006, 68, 2129–2160. doi: 10.1007/s11538-006-9100-1 |
[103] | F. Lutscher, E. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Pop. Biol., 2007, 71, 267–277. doi: 10.1016/j.tpb.2006.11.006 |
[104] | F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 2005, 47, 749–772. doi: 10.1137/050636152 |
[105] | L. Ma and D. Tang, Evolution of dispersal in advective homogeneous environments, Discrete Contin. Dyn. Syst., 2020, 40, 5815–5830. doi: 10.3934/dcds.2020247 |
[106] | H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo, 1984, 30, 645–673. |
[107] | H. Matano and M. Mimura, Pattern formation in competition-diffusion system in non-convex domains, Publ. RIMS Kyoto Univ., 1983, 19, 1049–1079. doi: 10.2977/prims/1195182020 |
[108] | J. Maynard Smith and G. Price, The logic of animal conflict, Nature, 1973, 246, 15–18. doi: 10.1038/246015a0 |
[109] | L. Mei and X. Zhang, Existence and nonexistence of positive steady states in multi-species phytoplankton dynamics, J. Differential Equations, 2012, 253, 2025–2063. doi: 10.1016/j.jde.2012.06.011 |
[110] | M. Mimura, S. I. Ei and Q. Fang, Effect of domain-shape on coexistence problems in a competition-diffusion system, J. Math. Biol., 1991, 29, 219–237. doi: 10.1007/BF00160536 |
[111] | K. Müller, The colonization cycle of freshwater insects, Oecologia, 1982, 52, 202–207. doi: 10.1007/BF00363837 |
[112] | R. Nagel, Operator matrices and reaction-diffusion system, Rend. Semin. Mat. Fis. Milano, 1989, 59, 185–196. doi: 10.1007/BF02925301 |
[113] | W. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philedelphia, 2011. |
[114] | W. Ni, J. Shi and M. Wang, Global stability of nonhomogeneous equilibrium solution for the diffusive Lotka-Volterra competition model, Calc. Var. Partial Differential Equations, 2020, 59, Paper No. 132, 28 pp. |
[115] | R. Peng, G. Zhang and M. Zhou, Asymptotic behavior of the principal eigenvalue of a linear second order elliptic operator with small/large diffusion coefficient, SIAM J. Math. Anal., 2019, 51, 4724–4753. doi: 10.1137/18M1217577 |
[116] | R. Peng and M. Zhou, Effects of large degenerate advection and boundary conditions on the principal eigenvalue and its eigenfunction of a linear second-order elliptic operator, Indiana Univ. Math. J., 2018, 67, 2523–2568. doi: 10.1512/iumj.2018.67.7547 |
[117] | A. Pocheville, The ecological niche: History and recent controversies. In: T. Heams, P. Huneman, G. Lecointre, M. Silberstein (eds), Handbook of Evolutionary Thinking in the Sciences, Springer, 2015. |
[118] | M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. |
[119] | Y. Shao, J. Wang and P. Zhou, On a second order eigenvalue problem and its application, J. Differential Equations, 2022, 327, 189–211. doi: 10.1016/j.jde.2022.04.030 |
[120] | A. Slavik, Lotka-Volterra competition model on graphs, SIAM J. Appl. Dyn. Syst., 2020, 19, 725–762. doi: 10.1137/19M1276285 |
[121] | H. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., 41, Amer. Math. Soc., Providence, RI, 1995. |
[122] | D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 2001, 82, 1219–1237. doi: 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2 |
[123] |
G. Sweers, Strong positivity in $C(\overline{\Omega})$ for elliptic systems, Math. Z., 1992, 209, 251–271. doi: 10.1007/BF02570833
CrossRef $C(\overline{\Omega})$ for elliptic systems" target="_blank">Google Scholar |
[124] | D. Tang and Y. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments, J. Differential Equations, 2020, 269, 1465–1483. doi: 10.1016/j.jde.2020.01.011 |
[125] | D. Tang and Y. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective heterogeneous environments, SIAM J. Appl. Dyn. Syst., 2021, 20, 1232–1252. doi: 10.1137/20M1372639 |
[126] | D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 2020, 268, 1570–1599. doi: 10.1016/j.jde.2019.09.003 |
[127] | O. Vasilyeva and F. Lutscher, Population dynamics in rivers: analysis of steady states, Can. Appl. Math. Q., 2010, 18, 439–469. |
[128] | Y. Wang, H. Nie and J. Wu, Coexistence and bistability of a competition model with mixed dispersal strategy, Nonlinear Anal. Real World Appl., 2020, 56, Paper No. 103175, 19pp. |
[129] | F. Xu and W. Gan, On a Lotka-Volterra type competition model from river ecology, Nonlinear Anal. Real World Appl., 2019, 47, 373–384. doi: 10.1016/j.nonrwa.2018.11.011 |
[130] | F. Xu, W. Gan and D. Tang, Global dynamics of a Lotka-Volterra competitive system from river ecology: General boundary conditions, Nonlinearity, 2020, 33, 1528–1541. doi: 10.1088/1361-6544/ab60d8 |
[131] | X. Yan, Y. Li and H. Nie, Dynamical behaviors of a classical Lotka-Volterra competition-diffusion-advection system, Nonlinear Anal. Real World Appl., 2021, 61, Paper No. 103344, 17pp. |
[132] | X. Yan, H. Nie and P. Zhou, On a competition-diffusion-advection system from river ecology: Mathematical analysis and numerical study, SIAM J. Appl. Dyn. Syst., 2022, 21, 438–469. doi: 10.1137/20M1387924 |
[133] | L. Zhang and X. Zhao, Asymptotic behavior of the basic reproduction ratio for periodic reaction-diffusion systems, SIAM J. Math. Anal., 2021, 53, 6873–6909. doi: 10.1137/20M1366344 |
[134] | X. Zhao, Dynamical Systems in Population Biology, Second edition. Springer, New York, 2017. |
[135] | X. Zhao and P. Zhou, On a Lotka-Volterra competition model: the effects of advection and spatial variation, Calc. Var. Partial Differential Equations, 2016, 55, Art. 73, 25 pp. |
[136] | P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differential Equations, 2016, 55, Art. 137, 29 pp. |
[137] | P. Zhou and Q. Huang, A spatiotemporal model for the effects of toxicants on populations in a polluted river, SIAM J. Appl. Math., 2022, 82, 95–118. doi: 10.1137/21M1405629 |
[138] | P. Zhou, D. Tang and D. Xiao, On Lotka-Volterra competitive parabolic systems: Exclusion, coexistence and bistability, J. Differential Equations, 2021, 282, 596–625. doi: 10.1016/j.jde.2021.02.031 |
[139] | P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 2018, 275, 356–380. doi: 10.1016/j.jfa.2018.03.006 |
[140] | P. Zhou and X. Zhao, Global dynamics of a two species competition model in open stream environments, J. Dynam. Differential Equations, 2018, 30, 613–636. doi: 10.1007/s10884-016-9562-2 |
[141] | P. Zhou and X. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 2018, 264, 4176–4198. doi: 10.1016/j.jde.2017.12.005 |