2022 Volume 12 Issue 5
Article Contents

Wenyi Qin, Peng Zhou. A REVIEW ON THE DYNAMICS OF TWO SPECIES COMPETITIVE ODE AND PARABOLIC SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2075-2109. doi: 10.11948/20220196
Citation: Wenyi Qin, Peng Zhou. A REVIEW ON THE DYNAMICS OF TWO SPECIES COMPETITIVE ODE AND PARABOLIC SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 2075-2109. doi: 10.11948/20220196

A REVIEW ON THE DYNAMICS OF TWO SPECIES COMPETITIVE ODE AND PARABOLIC SYSTEMS

  • This paper is devoted to a review on the dynamics of two species competition systems including the classical ODE, reaction-diffusion as well as reaction-diffusion-advection models. The primary purpose is to illustrate the effect of competition intensity, movement (diffusion and/or advection) and spatial variation on the population dynamics. Specific topics include Lotka-Volterra competition models in heterogeneous environments and in advective environments, linear second order eigenvalue problems, and the evolution of movement strategy. Several fundamental tools such as the monotone theory, the principal eigenvalue theory (for single equations or systems) and some technical approaches are introduced. Some recent developments are discussed and also several problems that deserve future investigation are proposed.

    MSC: 34L05, 37C65, 35K51, 92D25
  • 加载中
  • [1] S. Ahmad and A. C. Lazer, Asymptotic behavior of solutions of periodic competition diffusion system, Nonlinear Anal., 1989, 13, 263–284. doi: 10.1016/0362-546X(89)90054-0

    CrossRef Google Scholar

    [2] I. Averill, K. Y. Lam and Y. Lou, The role of advection in a two-species competition model: A Bifurcation Approach, Memoirs of AMS, 2017, 245 (#1161).

    Google Scholar

    [3] I. Averill, Y. Lou and D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dyn., 2012, 6, 117–130. doi: 10.1080/17513758.2010.529169

    CrossRef Google Scholar

    [4] X. Bai and X. He, Asymptotic behavior of the principal eigenvalue for cooperative periodic-parabolic systems and applications, J. Differential Equations, 2020, 269, 9868–9903. doi: 10.1016/j.jde.2020.06.067

    CrossRef Google Scholar

    [5] X. Bai, X. He and W. Ni, Dynamics of a periodic-parabolic Lotka-Volterra competition-diffusion system in heterogeneous environments, accepted by JEMS, 2022.

    Google Scholar

    [6] X. Bai and F. Li, Global dynamics of a competition model with nonlocal dispersal II: The full system, J. Differential Equations, 2015, 258, 2655–2685. doi: 10.1016/j.jde.2014.12.014

    CrossRef Google Scholar

    [7] X. Bai and F. Li, Classification of global dynamics of competition models with nonlocal dispersal I: Symmetric kernels, Calc. Var. Partial Differential Equations, 2018, 57, Paper No. 144, 35pp.

    Google Scholar

    [8] X. Bai and F. Li, Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small, Discrete Contin. Dyn. Syst., 2020, 40, 3075–3092. doi: 10.3934/dcds.2020035

    CrossRef Google Scholar

    [9] M. Ballyk, L. Dung, D. A. Jones and H. Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 1998, 59, 573–596. doi: 10.1137/S0036139997325345

    CrossRef Google Scholar

    [10] F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments, Canad. Appl. Math. Quart., 1995, 3, 379–397.

    Google Scholar

    [11] H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 2005, 253, 451-480. doi: 10.1007/s00220-004-1201-9

    CrossRef Google Scholar

    [12] A. Bezuglyy and Y. Lou, Reaction-diffusion models with large advection coefficients, Appl. Anal., 2010, 89, 983–1004. doi: 10.1080/00036810903479723

    CrossRef Google Scholar

    [13] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.

    Google Scholar

    [14] R. S. Cantrell, C. Cosner and Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 2006, 204, 199–214. doi: 10.1016/j.mbs.2006.09.003

    CrossRef Google Scholar

    [15] R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sec. A, 2007, 137, 497–518. doi: 10.1017/S0308210506000047

    CrossRef Google Scholar

    [16] R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and ideal free distribution, Math. Biosci. Eng., 2010, 7, 17–36. doi: 10.3934/mbe.2010.7.17

    CrossRef Google Scholar

    [17] R. S. Cantrell and K. Y. Lam, On the evolution of slow dispersal in multispecies communities, SIAM J. Math. Anal., 2021, 53, 4933–4964. doi: 10.1137/20M1361419

    CrossRef Google Scholar

    [18] S. Chen, J. Shi, Z. Shuai and Y. Wu, Global dynamics of a Lotka-Volterra competition patch model, Nonlinearity, 2022, 35, 817–842. doi: 10.1088/1361-6544/ac3c2e

    CrossRef Google Scholar

    [19] S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calc. Var. Partial Differential Equations, 2020, 59, Paper No. 33, 19pp.

    Google Scholar

    [20] X. Chen, R. Hambrock and Y. Lou, Evolution of conditional dispersal: a reaction-diffusion-advection model, J. Math. Biol., 2008, 57, 361–386. doi: 10.1007/s00285-008-0166-2

    CrossRef Google Scholar

    [21] X. Chen, K. Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 2012, 32, 3841–3859. doi: 10.3934/dcds.2012.32.3841

    CrossRef Google Scholar

    [22] X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 2008, 57, 627–658. doi: 10.1512/iumj.2008.57.3204

    CrossRef Google Scholar

    [23] X. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 2012, 61, 45–80. doi: 10.1512/iumj.2012.61.4518

    CrossRef Google Scholar

    [24] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 2014, 34, 1701–1745. doi: 10.3934/dcds.2014.34.1701

    CrossRef Google Scholar

    [25] C. Cosner and Y. Lou, Does movement toward better environments always benefit a population? J. Math. Anal. Appl., 2003, 277, 489–503. doi: 10.1016/S0022-247X(02)00575-9

    CrossRef Google Scholar

    [26] E. N. Dancer, Positivity of maps and applications, Topological nonlinear analysis, 303-340, Prog. Nonlinear Differential Equations Appl., 15, edited by Matzeu and Vignoli, Birkhauser, Boston, 1995.

    Google Scholar

    [27] E. N. Dancer, On the principal eigenvalue of linear cooperating elliptic system with small diffusion, J. Evol. Equ., 2009, 9, 419–428. doi: 10.1007/s00028-009-0011-0

    CrossRef Google Scholar

    [28] E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion I. General existence results, Nonlinear Anal., 1995, 24, 337–357. doi: 10.1016/0362-546X(94)E0063-M

    CrossRef Google Scholar

    [29] E. N. Dancer, K. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 2012, 364, 961–1005. doi: 10.1090/S0002-9947-2011-05488-7

    CrossRef Google Scholar

    [30] D. de Figueiredo and E. Mitidieri, Maximum principles for linear elliptic systems, Rend. Istit. Mat. Univ. Trieste, 1990, 22, 36–66.

    Google Scholar

    [31] P. DeMottoni, Qualitative analysis for some quasilinear parabolic systems, Institute of Math., Polish Academy Sci., zam, 1979, 190, 11–79.

    Google Scholar

    [32] A. Devinatz, R. Ellis and A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II, Indiana Univ. Math. J., 1973, 23, 991–1011.

    Google Scholar

    [33] U. Dieckmann, Can adaptive dynamics invade?, Trends Ecol. Evol., 1997, 12, 128–131. doi: 10.1016/S0169-5347(97)01004-5

    CrossRef Google Scholar

    [34] J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: a reaction-diffusion model, J. Math. Biol., 1998, 37, 61–83. doi: 10.1007/s002850050120

    CrossRef Google Scholar

    [35] Y. Du and S. B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 2010, 42, 1305–1333. doi: 10.1137/090775105

    CrossRef Google Scholar

    [36] S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat selection in birds, Acta Biotheretica, 1970, 19, 16–36.

    Google Scholar

    [37] A. Friedman, The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives, Indiana Univ. Math. J., 1972/1973, 22, 1005–1015.

    Google Scholar

    [38] W. Gan, Y. Shao, J. Wang and F. Xu, Global dynamics of a general competitive reaction-diffusion-advection system in one dimensional environments, Nonlinear Anal. Real World Appl., 2022, 66, Paper No. 103523, 9pp.

    Google Scholar

    [39] F. Gantmacher, Theory of Matrices, AMS Chelsea publishing, New York, 1959.

    Google Scholar

    [40] R. Gejji, Y. Lou, D. Munther and J. Peyton, Evolutionary convergence to ideal free dispersal strategies and coexistence, Bull. Math. Biol., 2012, 74, 257–299. doi: 10.1007/s11538-011-9662-4

    CrossRef Google Scholar

    [41] T. Godoy, J. P. Gossez and S. Paczka, On the asymptotic behavior of the principal eigenvalues of some elliptic problems, Ann. Mat. Pur. Appl., 2010, 189, 497–521. doi: 10.1007/s10231-009-0120-y

    CrossRef Google Scholar

    [42] C. Gui and Y. Lou, Uniqueness and nonuniqueness of positive steady states in the Lotka-Volterra competition model, Comm. Pure. Appl. Math., 1994, 47, 1571–1594. doi: 10.1002/cpa.3160471203

    CrossRef Google Scholar

    [43] Q. Guo, X. He and W. Ni, On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments, J. Math. Biol., 2020, 81, 403–433. doi: 10.1007/s00285-020-01507-9

    CrossRef Google Scholar

    [44] Q. Guo, X. He and W. Ni, Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments, Discrete Contin. Dyn. Syst., 2020, 40, 6547–6573. doi: 10.3934/dcds.2020290

    CrossRef Google Scholar

    [45] R. Hambrock and Y. Lou, The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull. Math. Biol., 2009, 71, 1793–1817. doi: 10.1007/s11538-009-9425-7

    CrossRef Google Scholar

    [46] W. Hao, K. Y. Lam and Y. Lou, Ecological and evolutionary dynamics in advective environments: critical domain size and boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 2021, 26, 367–400.

    Google Scholar

    [47] G. Hardin, The competitive exclusion principle, Science, 1960, 131, 1292–1297. doi: 10.1126/science.131.3409.1292

    CrossRef Google Scholar

    [48] A. Hastings, Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol., 1983, 24, 244–251. doi: 10.1016/0040-5809(83)90027-8

    CrossRef Google Scholar

    [49] X. He and W. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 2013, 254, 528–546. doi: 10.1016/j.jde.2012.08.032

    CrossRef Google Scholar

    [50] X. He and W. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: The general case, J. Differential Equations, 2013, 254, 4088–4108. doi: 10.1016/j.jde.2013.02.009

    CrossRef Google Scholar

    [51] X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I, Comm. Pure. Appl. Math., 2016, 69, 981–1014. doi: 10.1002/cpa.21596

    CrossRef Google Scholar

    [52] X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 2016, 55, Art. 25, 20 pp.

    Google Scholar

    [53] X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, III, Calc. Var. Partial Differential Equations, 2017, 56, Art. 132, 26 pp.

    Google Scholar

    [54] A. E. Hershey, J. Pastor, B. J. Peterson and G. W. Kling, Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river, Ecology, 1993, 74, 2315–2325. doi: 10.2307/1939584

    CrossRef Google Scholar

    [55] P. Hess, Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics Series, 247. Longman, Harlow, UK; Wiley, New York, 1991.

    Google Scholar

    [56] P. Hess and A. C. Lazer, On an abstract competition model and applications, Nonlinear Analysis T. M. A., 1991, 16, 917–940. doi: 10.1016/0362-546X(91)90097-K

    CrossRef Google Scholar

    [57] M. W. Hirsch and H. Smith, Monotone dynamical systems. Handbook of differential equations: ordinary differential equations. Vol. II, 239-357, Elsevier B. V., Amsterdam, 2005.

    Google Scholar

    [58] S. B. Hsu, H. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 1996, 348, 4083–4094. doi: 10.1090/S0002-9947-96-01724-2

    CrossRef Google Scholar

    [59] S. B. Hsu, P. Waltman and S. Ellermeyer, A remark on the global asymptotic stability of a dynamical system modeling two species competition, Hiroshima Math. J., 1994, 24, 435–445.

    Google Scholar

    [60] V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 2005, 211, 135–161. doi: 10.1016/j.jde.2004.06.003

    CrossRef Google Scholar

    [61] V. Hutson, K. Mischaikow and P. Pol$\acute{a}\breve{c}$ik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 2001, 43, 501–533. doi: 10.1007/s002850100106

    CrossRef Google Scholar

    [62] M. Iida, T. Muramatsu, H. Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system, Japan J. Indust. Appl. Math., 1998, 15, 233–252. doi: 10.1007/BF03167402

    CrossRef Google Scholar

    [63] D. Jiang, K. Y. Lam and Y. Lou, Competitive exclusion in a nonlocal reaction-diffusion-advection model of phytoplankton populations, Nonlinear Anal. Real World Appl., 2021, 61, Paper No. 103350, 15pp.

    Google Scholar

    [64] D. Jiang, K. Y. Lam, Y. Lou and Z. Wang, Monotonicity and global dynamics of a nonlocal two-species phytoplankton model, SIAM J. Appl. Math., 2019, 79, 716–742. doi: 10.1137/18M1221588

    CrossRef Google Scholar

    [65] H. Jiang, K. Y. Lam and Y. Lou, Are two-patch models sufficient? The evolution of dispersal and topology of river network modules, Bull. Math. Biol., 2020, 82, Paper No. 131, 42pp.

    Google Scholar

    [66] H. Jiang, K. Y. Lam and Y. Lou, Three-patch models for the evolution of dispersal in advective environments: varying drift and network topology, Bull. Math. Biol., 2021, 83, Paper No. 109, 46pp.

    Google Scholar

    [67] J. Jiang, X. Liang, and X. Zhao, Saddle-point behavior for monotone semiflows and reaction-diffusion models, J. Differential Equations, 2004, 203, 313–330. doi: 10.1016/j.jde.2004.05.002

    CrossRef Google Scholar

    [68] S. Kowalevski, Zur theorie der partiellen differentialgleichung, J. Reine Angew. Math., 1875, 80, 1–32.

    Google Scholar

    [69] K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 1985, 58, 15–21. doi: 10.1016/0022-0396(85)90020-8

    CrossRef Google Scholar

    [70] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk (N. S. ), 1948, 3, 3–95.

    Google Scholar

    [71] N. Lakos, Existence of steady-state solutions for a one-predator two-prey system, SIAM J. Math. Anal., 1990, 21, 647–659. doi: 10.1137/0521034

    CrossRef Google Scholar

    [72] K. Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations, 2011, 250, 161–181. doi: 10.1016/j.jde.2010.08.028

    CrossRef Google Scholar

    [73] K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal., 2012, 44, 1808–1830. doi: 10.1137/100819758

    CrossRef Google Scholar

    [74] K. Y. Lam, S. Liu and Y. Lou, Selected topics on reaction-diffusion-advection models from spatial ecology, Math. Appl. Sci. Eng., 2020, 1, 91–206.

    Google Scholar

    [75] K. Y. Lam and Y. Lou, Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dynam. Differential Equations, 2016, 28, 29–48. doi: 10.1007/s10884-015-9504-4

    CrossRef Google Scholar

    [76] K. Y. Lam and Y. Lou, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 2014, 76, 261–291. doi: 10.1007/s11538-013-9901-y

    CrossRef Google Scholar

    [77] K. Y. Lam and Y. Lou, Evolution of conditional dispersal: evolutionarily stable strategies in spatial models, J. Math. Biol., 2014, 68, 851–877. doi: 10.1007/s00285-013-0650-1

    CrossRef Google Scholar

    [78] K. Y. Lam and Y. Lou, Persistence, competition and evolution. The dynamics of biological systems, Math. Planet Earth, Springer, Cham., 2019, 205–238, .

    Google Scholar

    [79] K. Y. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 2015, 9, 188–212. doi: 10.1080/17513758.2014.969336

    CrossRef Google Scholar

    [80] K. Y. Lam and D. Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. Amer. Math. Soc., 2016, 144, 1153–1159.

    Google Scholar

    [81] K. Y. Lam and N. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 2010, 28, 1051–1067. doi: 10.3934/dcds.2010.28.1051

    CrossRef Google Scholar

    [82] K. Y. Lam and N. Ni, Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 2012, 72, 1695–1712. doi: 10.1137/120869481

    CrossRef Google Scholar

    [83] K. Y. Lam and N. Ni, Advection-mediated competition in general environments, J. Differential Equations, 2014, 257, 3466–3500. doi: 10.1016/j.jde.2014.06.019

    CrossRef Google Scholar

    [84] F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with nonlocal dispersal I: the shadow system, J. Math. Anal. Appl., 2014, 412, 485–497. doi: 10.1016/j.jmaa.2013.10.071

    CrossRef Google Scholar

    [85] K. Li and F. Xu, Global dynamics of a population model from river ecology, J. Appl. Anal. Comput., 2020, 10, 1698–1707.

    Google Scholar

    [86] Z. Li, B. Dai and X. Dong, Global stability of nonhomogeneous steady-state solution in a Lotka-Volterra competition-diffusion-advection model, Appl. Math. Lett., 2020, 107, 106480, 8pp. doi: 10.1016/j.aml.2020.106480

    CrossRef Google Scholar

    [87] X. Liang and J. Jiang, On the finite-dimensional dynamical systems with limited competition, Trans. Amer. Math. Soc., 2002, 354, 3535–3554. doi: 10.1090/S0002-9947-02-03032-5

    CrossRef Google Scholar

    [88] S. Liu and Y. Lou, A functional approach towards eigenvalue problems associated with incompressible flow, Discrete Contin. Dyn. Syst., 2020, 40, 3715–3736. doi: 10.3934/dcds.2020028

    CrossRef Google Scholar

    [89] S. Liu and Y. Lou, Ecological and evolutionary dynamics in periodic and advective habitats, 2021, in press.

    Google Scholar

    [90] S. Liu, Y. Lou, R. Peng and M. Zhou, Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator I: Large advection, SIAM J. Math. Anal., 2021, 53, 5243–5277. doi: 10.1137/20M1379563

    CrossRef Google Scholar

    [91] S. Liu, Y. Lou, R. Peng and M. Zhou, Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator II: Small diffusion, Trans. Amer. Math. Soc., 2021, 374, 4895–4930. doi: 10.1090/tran/8364

    CrossRef Google Scholar

    [92] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 2006, 223, 400–426. doi: 10.1016/j.jde.2005.05.010

    CrossRef Google Scholar

    [93] Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, Tutorials in mathematical biosciences. Ⅳ, 171–205, Lecture Notes in Math. 1922, Math. Biosci. Subser., Springer, Berlin, 2008.

    Google Scholar

    [94] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 2014, 69, 1319–1342. doi: 10.1007/s00285-013-0730-2

    CrossRef Google Scholar

    [95] Y. Lou and D. Munther, Dynamics of a three species competition model, Discrete Contin. Dyn. Syst., 2012, 32, 3099–3131. doi: 10.3934/dcds.2012.32.3099

    CrossRef Google Scholar

    [96] Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection in population genetics, J. Differential Equations, 2004, 204, 292–322. doi: 10.1016/j.jde.2004.01.009

    CrossRef Google Scholar

    [97] Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 1996, 131, 79–131. doi: 10.1006/jdeq.1996.0157

    CrossRef Google Scholar

    [98] Y. Lou, H. Nie, and Y. Wang, Coexistence and bistability of a competition model in open advective evironments, Math. Biosci., 2018, 306, 10–19. doi: 10.1016/j.mbs.2018.09.013

    CrossRef Google Scholar

    [99] Y. Lou, D. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 2016, 36, 953–969.

    Google Scholar

    [100] Y. Lou, X. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 2019, 121, 47–82. doi: 10.1016/j.matpur.2018.06.010

    CrossRef Google Scholar

    [101] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differential Equations, 2015, 259, 141–171. doi: 10.1016/j.jde.2015.02.004

    CrossRef Google Scholar

    [102] F. Lutscher, M. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 2006, 68, 2129–2160. doi: 10.1007/s11538-006-9100-1

    CrossRef Google Scholar

    [103] F. Lutscher, E. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Pop. Biol., 2007, 71, 267–277. doi: 10.1016/j.tpb.2006.11.006

    CrossRef Google Scholar

    [104] F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 2005, 47, 749–772. doi: 10.1137/050636152

    CrossRef Google Scholar

    [105] L. Ma and D. Tang, Evolution of dispersal in advective homogeneous environments, Discrete Contin. Dyn. Syst., 2020, 40, 5815–5830. doi: 10.3934/dcds.2020247

    CrossRef Google Scholar

    [106] H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo, 1984, 30, 645–673.

    Google Scholar

    [107] H. Matano and M. Mimura, Pattern formation in competition-diffusion system in non-convex domains, Publ. RIMS Kyoto Univ., 1983, 19, 1049–1079. doi: 10.2977/prims/1195182020

    CrossRef Google Scholar

    [108] J. Maynard Smith and G. Price, The logic of animal conflict, Nature, 1973, 246, 15–18. doi: 10.1038/246015a0

    CrossRef Google Scholar

    [109] L. Mei and X. Zhang, Existence and nonexistence of positive steady states in multi-species phytoplankton dynamics, J. Differential Equations, 2012, 253, 2025–2063. doi: 10.1016/j.jde.2012.06.011

    CrossRef Google Scholar

    [110] M. Mimura, S. I. Ei and Q. Fang, Effect of domain-shape on coexistence problems in a competition-diffusion system, J. Math. Biol., 1991, 29, 219–237. doi: 10.1007/BF00160536

    CrossRef Google Scholar

    [111] K. Müller, The colonization cycle of freshwater insects, Oecologia, 1982, 52, 202–207. doi: 10.1007/BF00363837

    CrossRef Google Scholar

    [112] R. Nagel, Operator matrices and reaction-diffusion system, Rend. Semin. Mat. Fis. Milano, 1989, 59, 185–196. doi: 10.1007/BF02925301

    CrossRef Google Scholar

    [113] W. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philedelphia, 2011.

    Google Scholar

    [114] W. Ni, J. Shi and M. Wang, Global stability of nonhomogeneous equilibrium solution for the diffusive Lotka-Volterra competition model, Calc. Var. Partial Differential Equations, 2020, 59, Paper No. 132, 28 pp.

    Google Scholar

    [115] R. Peng, G. Zhang and M. Zhou, Asymptotic behavior of the principal eigenvalue of a linear second order elliptic operator with small/large diffusion coefficient, SIAM J. Math. Anal., 2019, 51, 4724–4753. doi: 10.1137/18M1217577

    CrossRef Google Scholar

    [116] R. Peng and M. Zhou, Effects of large degenerate advection and boundary conditions on the principal eigenvalue and its eigenfunction of a linear second-order elliptic operator, Indiana Univ. Math. J., 2018, 67, 2523–2568. doi: 10.1512/iumj.2018.67.7547

    CrossRef Google Scholar

    [117] A. Pocheville, The ecological niche: History and recent controversies. In: T. Heams, P. Huneman, G. Lecointre, M. Silberstein (eds), Handbook of Evolutionary Thinking in the Sciences, Springer, 2015.

    Google Scholar

    [118] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984.

    Google Scholar

    [119] Y. Shao, J. Wang and P. Zhou, On a second order eigenvalue problem and its application, J. Differential Equations, 2022, 327, 189–211. doi: 10.1016/j.jde.2022.04.030

    CrossRef Google Scholar

    [120] A. Slavik, Lotka-Volterra competition model on graphs, SIAM J. Appl. Dyn. Syst., 2020, 19, 725–762. doi: 10.1137/19M1276285

    CrossRef Google Scholar

    [121] H. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., 41, Amer. Math. Soc., Providence, RI, 1995.

    Google Scholar

    [122] D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 2001, 82, 1219–1237. doi: 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2

    CrossRef Google Scholar

    [123] G. Sweers, Strong positivity in $C(\overline{\Omega})$ for elliptic systems, Math. Z., 1992, 209, 251–271. doi: 10.1007/BF02570833

    CrossRef $C(\overline{\Omega})$ for elliptic systems" target="_blank">Google Scholar

    [124] D. Tang and Y. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments, J. Differential Equations, 2020, 269, 1465–1483. doi: 10.1016/j.jde.2020.01.011

    CrossRef Google Scholar

    [125] D. Tang and Y. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective heterogeneous environments, SIAM J. Appl. Dyn. Syst., 2021, 20, 1232–1252. doi: 10.1137/20M1372639

    CrossRef Google Scholar

    [126] D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 2020, 268, 1570–1599. doi: 10.1016/j.jde.2019.09.003

    CrossRef Google Scholar

    [127] O. Vasilyeva and F. Lutscher, Population dynamics in rivers: analysis of steady states, Can. Appl. Math. Q., 2010, 18, 439–469.

    Google Scholar

    [128] Y. Wang, H. Nie and J. Wu, Coexistence and bistability of a competition model with mixed dispersal strategy, Nonlinear Anal. Real World Appl., 2020, 56, Paper No. 103175, 19pp.

    Google Scholar

    [129] F. Xu and W. Gan, On a Lotka-Volterra type competition model from river ecology, Nonlinear Anal. Real World Appl., 2019, 47, 373–384. doi: 10.1016/j.nonrwa.2018.11.011

    CrossRef Google Scholar

    [130] F. Xu, W. Gan and D. Tang, Global dynamics of a Lotka-Volterra competitive system from river ecology: General boundary conditions, Nonlinearity, 2020, 33, 1528–1541. doi: 10.1088/1361-6544/ab60d8

    CrossRef Google Scholar

    [131] X. Yan, Y. Li and H. Nie, Dynamical behaviors of a classical Lotka-Volterra competition-diffusion-advection system, Nonlinear Anal. Real World Appl., 2021, 61, Paper No. 103344, 17pp.

    Google Scholar

    [132] X. Yan, H. Nie and P. Zhou, On a competition-diffusion-advection system from river ecology: Mathematical analysis and numerical study, SIAM J. Appl. Dyn. Syst., 2022, 21, 438–469. doi: 10.1137/20M1387924

    CrossRef Google Scholar

    [133] L. Zhang and X. Zhao, Asymptotic behavior of the basic reproduction ratio for periodic reaction-diffusion systems, SIAM J. Math. Anal., 2021, 53, 6873–6909. doi: 10.1137/20M1366344

    CrossRef Google Scholar

    [134] X. Zhao, Dynamical Systems in Population Biology, Second edition. Springer, New York, 2017.

    Google Scholar

    [135] X. Zhao and P. Zhou, On a Lotka-Volterra competition model: the effects of advection and spatial variation, Calc. Var. Partial Differential Equations, 2016, 55, Art. 73, 25 pp.

    Google Scholar

    [136] P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differential Equations, 2016, 55, Art. 137, 29 pp.

    Google Scholar

    [137] P. Zhou and Q. Huang, A spatiotemporal model for the effects of toxicants on populations in a polluted river, SIAM J. Appl. Math., 2022, 82, 95–118. doi: 10.1137/21M1405629

    CrossRef Google Scholar

    [138] P. Zhou, D. Tang and D. Xiao, On Lotka-Volterra competitive parabolic systems: Exclusion, coexistence and bistability, J. Differential Equations, 2021, 282, 596–625. doi: 10.1016/j.jde.2021.02.031

    CrossRef Google Scholar

    [139] P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 2018, 275, 356–380. doi: 10.1016/j.jfa.2018.03.006

    CrossRef Google Scholar

    [140] P. Zhou and X. Zhao, Global dynamics of a two species competition model in open stream environments, J. Dynam. Differential Equations, 2018, 30, 613–636. doi: 10.1007/s10884-016-9562-2

    CrossRef Google Scholar

    [141] P. Zhou and X. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 2018, 264, 4176–4198. doi: 10.1016/j.jde.2017.12.005

    CrossRef Google Scholar

Article Metrics

Article views(4179) PDF downloads(612) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint