2024 Volume 14 Issue 4
Article Contents

Xuqing Zhang, Yidu Yang, Hai Bi. STABILIZED TWO-GRID DISCRETIZATIONS OF LOCKING FREE FOR THE ELASTICITY EIGENVALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 1831-1853. doi: 10.11948/20220048
Citation: Xuqing Zhang, Yidu Yang, Hai Bi. STABILIZED TWO-GRID DISCRETIZATIONS OF LOCKING FREE FOR THE ELASTICITY EIGENVALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 1831-1853. doi: 10.11948/20220048

STABILIZED TWO-GRID DISCRETIZATIONS OF LOCKING FREE FOR THE ELASTICITY EIGENVALUE PROBLEM

  • In this paper, we propose two stabilized two-grid finite element discretizations for nearly incompressible elasticity eigenvalue problem and give the error estimates of eigenvalues and eigenfunctions for the schemes. Numerical experiments are provided to validate our theoretical analysis and exhibit that our schemes are locking free and highly efficient.

    MSC: 65N25, 65N30
  • 加载中
  • [1] A. Andreev, R. Lazarov and M. Racheva, Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems, Am. J. Comput. Appl. Math., 2005, 182, 333-349. doi: 10.1016/j.cam.2004.12.015

    CrossRef Google Scholar

    [2] D. Arnold, J. Douglas and C. Gupta, A family of higher order mixed finite element methods for plane elasticity, Numer. Math., 1984, 45, 1222.

    Google Scholar

    [3] I. Babuška and J. Osborn, Eigenvalue Problems, in: P. G. Ciarlet, J. L. Lions (Eds. ), Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, Elsevier Science Publishers, North-Holand, 1991.

    Google Scholar

    [4] I. Babuška and M. Suri, Locking effects in the finite element approximation of elasticity problems, Numer. Math., 1992, 62, 439-463. doi: 10.1007/BF01396238

    CrossRef Google Scholar

    [5] I. Babuška and M. Suri, On locking and robustness in the finite element method, SIAM J. Numer. Anal., 1992, 29, 1261-1293. doi: 10.1137/0729075

    CrossRef Google Scholar

    [6] F. Bertrand, D. Boffi and R. Ma, An adaptive finite element scheme for the hellinger-reissner elasticity mixed eigenvalue problem, Comput. Methods Appl. Math., 2021, 21(3), 501-512. doi: 10.1515/cmam-2020-0034

    CrossRef Google Scholar

    [7] H. Bi, X. Zhang and Y. Yang, The nonconforming crouzeix-raviart element approximations and two-grid discretizations for the elastic eigenvalue problem, J. Comput. Math., 2023, 41(6), 1041-1063. doi: 10.4208/jcm.2201-m2020-0128

    CrossRef Google Scholar

    [8] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer., 2010, 19, 1-120. doi: 10.1017/S0962492910000012

    CrossRef Google Scholar

    [9] S. Brenner, Poincaré-friedrichs inequalities for piecewise $h^1$ functions, SIAM J. Numer. Anal., 2003, 41, 306-324. doi: 10.1137/S0036142902401311

    CrossRef $h^1$ functions" target="_blank">Google Scholar

    [10] S. Brenner and L. Scoot, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2010.

    Google Scholar

    [11] S. Brenner and L. Sung, Linear finite element methods for planar linear elasticity, Math. Comp., 1992, 59(200), 321-338, . doi: 10.1090/S0025-5718-1992-1140646-2

    CrossRef Google Scholar

    [12] J. Chen, Y. Xu and J. Zou, An adaptive inverse iteration for maxwell eigenvalue problem based on edge elements, J. Comput. Phys., 2010, 229, 2649-2658. doi: 10.1016/j.jcp.2009.12.013

    CrossRef Google Scholar

    [13] L. Chen, Ifem: An Innovative Finite Element Methods Package in Matlab. Technical Report, University of California at Irvine, 2009.

    Google Scholar

    [14] M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations, RAIRO Anal. Numer., 1973, 3, 33-75.

    Google Scholar

    [15] X. Dai and A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal., 2008, 46, 295-324. doi: 10.1137/06067780X

    CrossRef Google Scholar

    [16] B. Gong, J. Han, J. Sun and Z. Zhang, A shifted-inverse adaptive multigrid method for the elastic eigenvalue problem, Commun. Comput. Phys., 2019, 27(1), 251-273.

    Google Scholar

    [17] J. Han, Z. Zhang and Y. Yang, A new adaptive mixed finite element method based on residual type a posterior error estimates for the stokes eigenvalue problem, Numer. Methods Partial Differ. Equ., 2015, 31(1), 31-53. doi: 10.1002/num.21891

    CrossRef Google Scholar

    [18] P. Hansbo and M. Larson, Discontinuous galerkin and the crouzeix-raviart element: Application to elasticity, M2AN Math. Model Numer. Anal., 2003, 37(1), 63-72. doi: 10.1051/m2an:2003020

    CrossRef Google Scholar

    [19] X. Hu and X. Cheng, Corrigendum to: Acceleration of a two-grid method for eigenvalue problems, Math. Comput., 2015, 84, 2701-2704. doi: 10.1090/mcom/2967

    CrossRef Google Scholar

    [20] X. Huang and J. Huang, The compact discontinuous galerkin method for nearly incompressible linear elasticity, J. Sci. Comput., 2013, 56, 291-318. doi: 10.1007/s10915-012-9676-6

    CrossRef Google Scholar

    [21] D. Inzunza, F. Lepe and G. Rivera, Displacement-pseudostress formulation for the linear elasticity spectral problem, Numer. Methods Partial Differential Eq., 2023, 39, 1996-2017. doi: 10.1002/num.22955

    CrossRef Google Scholar

    [22] K. Kim, Analysis of some low-order nonconforming mixed finite elements for linear elasticity problem, Numer. Methods Partial Differ. Equ., 2006, 22, 638-660. doi: 10.1002/num.20114

    CrossRef Google Scholar

    [23] J. Lee and H. Kim, Analysis of a staggered discontinuous galerkin method for linear elasticity, J. Sci. Comput., 2016, 66, 625-649. doi: 10.1007/s10915-015-0036-1

    CrossRef Google Scholar

    [24] M. Li, D. Shi and Z. Li, The stabilized mixed finite element scheme of elasticity problem, Comput. Appl. Math., 2017, 37(3), 2588-2604.

    Google Scholar

    [25] S. Meddahi, D. Mora and R. Rodr$\acute{i}$guez, Finite element spectral analysis for the mixed formulation of the elasticity equations, SIAM J. Numer. Anal., 2013, 51(2), 1041-1063. doi: 10.1137/120863010

    CrossRef Google Scholar

    [26] M. Morley, A family of mixed finite elements for linear elasticity, Numer. Math., 1989, 55, 633-666. doi: 10.1007/BF01389334

    CrossRef Google Scholar

    [27] A. Russo, Eigenvalue approximation by mixed non-conforming finite element methods, Calcolo, 2014, 51(4), 563-597. doi: 10.1007/s10092-013-0101-9

    CrossRef Google Scholar

    [28] M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials. uniformly valid, optimal order estimates, Numer. Math., 1983, 41, 39-53. doi: 10.1007/BF01396304

    CrossRef Google Scholar

    [29] F. Wang, S. Wu and J. Xu, A mixed discontinuous galerkin method for linear elasticity with strongly imposed symmetry, J. Sci. Comput., 2020, 83(2), 1-17.

    Google Scholar

    [30] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput., 1999, 70(233), 17-26. doi: 10.1090/S0025-5718-99-01180-1

    CrossRef Google Scholar

    [31] J. Xu and A. Zhou, Two-grid discretization scheme for eigenvalue problems, Math. Comput., 2001, 70, 17-25.

    Google Scholar

    [32] Y. Yang and H. Bi, A two-grid discretization scheme based on the shifted-inverse power method, SIAM J. Numer. Anal., 2011, 49(4), 1602-1624. doi: 10.1137/100810241

    CrossRef Google Scholar

    [33] Y. Yang, H. Bi, J. Han and Y. Yu, The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems, SIAM J. Sci. Comput., 2015, 37(6), A2583-A2606. doi: 10.1137/140992011

    CrossRef Google Scholar

    [34] Y. Yang and Z. Chen, The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators, Sci. China Ser. A, 2008, 51, 1232-1242.

    Google Scholar

    [35] B. Zhang and J. Zhao, A mixed formulation of stabilized nonconforming finite element method for linear elasticity, Adv. Appl. Math. Mech., 2020, 12(1), 278-300. doi: 10.4208/aamm.OA-2019-0048

    CrossRef Google Scholar

    [36] X. Zhang, Y. Yang and Y. Zhang, A locking-free shifted inverse iteration based on multigrid discretization for the elastic eigenvalue problem, Math. Methods Appli. Sci., 2021, 44(7), 5821-5838. doi: 10.1002/mma.7150

    CrossRef Google Scholar

    [37] Y. Zhang, H. Bi and Y. Yang, The two-grid discretization of ciarlet-raviart mixed method for biharmonic eigenvalue problems, Appl. Numer. Math., 2019, 138, 94-113. doi: 10.1016/j.apnum.2018.12.007

    CrossRef Google Scholar

    [38] J. Zhou, X. Hu, L. Zhong, et al., Two-grid methods for maxwell eigenvalue problems, SIAM J. Numer. Anal., 2014, 52, 2027-2047. doi: 10.1137/130919921

    CrossRef Google Scholar

Figures(2)  /  Tables(6)

Article Metrics

Article views(902) PDF downloads(316) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint