Citation: | Yorick Hardy, Bertin Zinsou. CANONICAL FORMS FOR BOUNDARY CONDITIONS OF SELF-ADJOINT DIFFERENTIAL OPERATORS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 1854-1868. doi: 10.11948/20220073 |
Canonical forms of boundary conditions are important in the study of the eigenvalues of boundary conditions and their numerical computations. The known canonical forms for self-adjoint differential operators, with eigenvalue parameter dependent boundary conditions, are limited to 4-th order differential operators. We derive canonical forms for self-adjoint 2n-th order differential operators with eigenvalue parameter dependent boundary conditions. We compare the 4-th order canonical forms to the canonical forms derived in this article.
[1] | P. B. Bailey, W. N. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Trans. Math. Software, 2001, 27(2), 143-192. DOI: 10.1145/383738.383739. |
[2] | Q. Bao, X. Hao, J. Sun and A. Zettl, New canonical forms of self-adjoint boundary conditions for regular differential operators of order four, J. Appl. Anal. Comput., 2019, 9(6), 2190-2211. DOI: 10.11948/20180343. |
[3] | H. Führ and Z. Rzeszotnik, A note on factoring unitary matrices, Linear Algebra Appl., 2018, 547, 32-44. DOI: 10.1016/j.laa.2018.02.017. |
[4] | X. Hao, J. Sun and A. Zettl, Canonical forms of self-adjoint boundary conditions for differential operators of order four, J. Math. Anal. Appl., 2012, 387(2), 1176-1187. DOI: 10.1016/j.jmaa.2011.10.025. |
[5] | R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd edition Cambridge University Press, Cambridge, 2012. |
[6] | Kh. D. Ikramov, Decompositions of pseudo-unitary and centro-unitary matrices, J. Math. Sci., 2017, 224(6), 861-868. DOI: 10.1007/s10958-017-3455-8. |
[7] |
K. Li, J. Sun and X. Hao, Dependence of eigenvalues of $2n$th order boundary value transmission problems, Bound. Value Probl., 2017, 2017, 143. DOI: 10.1186/s13661-017-0876-8.
CrossRef $2n$th order boundary value transmission problems" target="_blank">Google Scholar |
[8] | K. Li, M. Zhang and Z. Zheng, Dependence of eigenvalues of Dirac system on the parameters, Stud. Appl. Math., 2023, 150(4), 1201-1216. DOI: 10.1111/sapm.12567. |
[9] |
Q. Lin, Dependence of eigenvalues of $(2n + 1)$th order boundary value problems with transmission conditions, J. Nonlinear Math. Phys., 2023, 30(3), 1190-1209. DOI: 10.1007/s44198-023-00114-8.
CrossRef $(2n + 1)$th order boundary value problems with transmission conditions" target="_blank">Google Scholar |
[10] | M. Möller and A. Zettl, Symmetric Differential operators and their Friedrichs extension, J. Differential Equations, 1995, 115(1), 50-69. DOI: 10.1006/jdeq.1995.1003. |
[11] | M. Möller and B. Zinsou, Self-adjoint higher order differential operators with eigenvalue parameter dependent boundary conditions, Bound. Value Probl., 2015, 2015, 79. DOI: 10.1186/s13661-015-0341-5. |
[12] | T. Niu, X. Hao, J. Sun and K. Li, Canonical forms of self-adjoint boundary conditions for regular differential operators of order three, Oper. Matrices, 2020, 14(1), 207-220. DOI: 10.7153/oam-2020-14-16. |
[13] | C. C. Paige and M. Wei, History and generality of the CS decomposition, Linear Algebra Appl., 1994, 208-209, 303-326. DOI: 10.1016/0024-3795(94)90446-4. |
[14] | J. R. Silvester, Determinants of block matrices, Math. Gaz., 2000, 84(501), 460-467. DOI: 10.2307/3620776. |
[15] | A. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions: Separated, coupled, and mixed, J. of Funct. Anal., 2008, 255(6), 1554-1573. DOI: 10.1016/j.jfa.2008.05.003. |
[16] | P. Zemánek and S. Clark, Characterization of self-adjoint extensions for discrete symplectic systems, J. Math. Anal. Appl., 2016, 440(1), 323-350. DOI: 10.1016/j.jmaa.2016.03.028. |
[17] |
A. Zettl, Recent Developments in Sturm-Liouville Theory, De Gruyter Studies in Mathematics Volume 76, De Gruyter, Berlin, 2021. DOI: |
[18] | J. Zheng, K. Li and Z. Zheng, Eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary and interface conditions, Math. Model. Anal., 2023, 28(3), 374-392. DOI: 10.3846/mma.2023.17094. |
[19] | B. Zinsou, Dependence of eigenvalues of fourth-order boundary value problems with transmission conditions, Rocky Mountain J. Math. 2020, 50(1), 369-381. DOI: 10.1216/rmj.2020.50.369. |