2022 Volume 12 Issue 3
Article Contents

Ping Yang, Yiping Lin. STABILITY SWITCHING CURVES AND HOPF BIFURCATION ON A THREE SPECIES FOOD CHAIN WITH TWO DELAYS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1062-1076. doi: 10.11948/20220118
Citation: Ping Yang, Yiping Lin. STABILITY SWITCHING CURVES AND HOPF BIFURCATION ON A THREE SPECIES FOOD CHAIN WITH TWO DELAYS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1062-1076. doi: 10.11948/20220118

STABILITY SWITCHING CURVES AND HOPF BIFURCATION ON A THREE SPECIES FOOD CHAIN WITH TWO DELAYS

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: linyiping689@163.com(Y. Lin)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11761040)
  • A three species food chain with two time delays and double Holling type-Ⅱ functional responses is investigated. The conditions for the existence of positive equilibrium and Hopf bifurcation are presented. The stability area of positive equilibrium is surrounded by coordinate axis and stability switching curves. By using the theory of Hassard, Hopf bifurcation directions are determined analytically. Numerical simulations are presented on the frontier of stability to explain and support the analytic results.

    MSC: 34A34, 34C23, 34C25, 34D20, 37G15
  • 加载中
  • [1] A. A. Arafa, Y. Xu and G. M. Mahmoud, Chaos suppression via integrative time delay control, Int. J. Bifurcat. Chaos, 2020. DOI: 10.1142/S0218127420502089.

    CrossRef Google Scholar

    [2] K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 1982, 86, 592-627. doi: 10.1016/0022-247X(82)90243-8

    CrossRef Google Scholar

    [3] G. Cui and X. Yan, Stability and bifurcation analysis on a three-species food chain system with two delays, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16, 3704-3720. doi: 10.1016/j.cnsns.2010.12.042

    CrossRef Google Scholar

    [4] J. Fan and Y. Lin, Bifurcation and chaos of a three species food chain system with time delay, 2011 Fourth International Workshop on Chaos-Fractals Theories and Applications, 2011. DOI: 10.1109/IWCFTA.2011.41.

    Google Scholar

    [5] S. Gakkhar and A. Singh, Control of chaos due to additional predator in the Hastings-Powell food chain model, J. Math. Anal. Appl., 2012, 385, 423-438. doi: 10.1016/j.jmaa.2011.06.047

    CrossRef Google Scholar

    [6] A. A. Gomes, E. Manica and M. C. Varriale, Applications of chaos control techniques to a three-species food chain, Chaos Solit. Fract., 2008, 36, 1097-1107. doi: 10.1016/j.chaos.2006.07.027

    CrossRef Google Scholar

    [7] K. Gu, S. I. Niculescu and J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 2005, 311, 231-253. doi: 10.1016/j.jmaa.2005.02.034

    CrossRef Google Scholar

    [8] J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, J. Math. Anal. Appl., 1993, 178, 344-362. doi: 10.1006/jmaa.1993.1312

    CrossRef Google Scholar

    [9] B. Hassard, D. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.

    Google Scholar

    [10] A. Hastings and T. Powell, Chaos in three species food chain, Ecology, 1991, 72, 896-903. doi: 10.2307/1940591

    CrossRef Google Scholar

    [11] X. Lin and H. Wang, Stability analysis of delay differential equations with two discrete delays, Can. Appl. Math. Q., 2012, 20, 519-533.

    Google Scholar

    [12] K. E. Lonngren, E. Bai and A. Ucar, Dynamics and synchronization of the Hastings-Powell model of the food chain, Chaos Solit. Fract., 2004, 20, 387-393. doi: 10.1016/S0960-0779(03)00421-1

    CrossRef Google Scholar

    [13] S. Lv and M. Zhao, The dynamic complexity of a three species food chain model, Chaos Solit. Fract., 2008, 37, 1469-1480. doi: 10.1016/j.chaos.2006.10.057

    CrossRef Google Scholar

    [14] A. Matsumotoa and F. Szidarovszky, Stability switching curves in a Lotka-Volterra competition system with two delays, Math. and Comput. Simulat., 2020, 178, 422-438. doi: 10.1016/j.matcom.2020.06.017

    CrossRef Google Scholar

    [15] O. P. Misra and A. R. Babu, Modelling effect of toxicant in a three-species food-chain system incorporating delay in toxicant uptake process by prey, Model. Earth Syst. Environ., 2016. DOI: 10.1007/s40808-016-0128-4.

    CrossRef Google Scholar

    [16] O. Moaaz and A. Muhib, New oscillation criteria for nonlinear delay differential equations of fourth-order, Appl. Math. Comput., 2020. DOI: 10.1016/j.amc.2020.125192.

    CrossRef Google Scholar

    [17] H. A. E. Morshedy and A. R. Herrera, Criteria of global attraction in systems of delay differential equations with mixed monotonicity, J. Differ. Equations, 2020, 268, 5945-5968. doi: 10.1016/j.jde.2019.11.016

    CrossRef Google Scholar

    [18] R. D. Parshad, R. K. Upadhyay, S. Mishra, S. K. Tiwari and S. Sharma, On the explosive instability in a three-species food chain model with modified Holling type Ⅳ functional response, Math. Method. Appl. Sci., 2017, 40, 5707-5726. doi: 10.1002/mma.4419

    CrossRef Google Scholar

    [19] K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 2012, 235, 98-109. doi: 10.1016/j.mbs.2011.11.002

    CrossRef Google Scholar

    [20] H. Qiu and W. Deng, Optimal harvesting of a stochastic delay tri-trophic food-chain model with Levy jumps, Physica A: Statistical Mechanics and its Applications, 2018, 492, 1715-1728. doi: 10.1016/j.physa.2017.11.092

    CrossRef Google Scholar

    [21] H. Su and J. Xu, Time-delayed sampled-data feedback control of differential systems undergoing Hopf bifurcation, Int. J. Bifurcat. Chaos, 2021. DOI: 10.1142/S0218127421500048.

    CrossRef Google Scholar

    [22] C. Tian and L. Zhang, Hopf bifurcation analysis in a diffusive food-chain model with time delay, Comput. Math. Appl., 2013, 66, 2139-2153. doi: 10.1016/j.camwa.2013.09.002

    CrossRef Google Scholar

    [23] M. C. Varriale and A. A. Gomes, A study of a three species food chain, Ecol. Model., 1998, 110, 119-133. doi: 10.1016/S0304-3800(98)00062-3

    CrossRef Google Scholar

    [24] F. Wang, S. Zhang and L. Chen, Permanence and complexity of a three species food chain with impulsive effect on the top predator, Int. J. Nonlinear Sci. Numer. Simul., 2005, 6, 169-180.

    Google Scholar

    [25] R. Xu, L. Chen and F. Hao, Periodic solutions of a discrete time Lotka-Volterra type food-chain model with delays, Appl. Math. Comput., 2005, 171, 91-103. doi: 10.1016/j.amc.2005.01.027

    CrossRef Google Scholar

    [26] P. Yang, J. Fang, Y. Dai and Y. Lin, Rank-one chaos in a periodically kicked three-species food chain with time-delay, Int. J. Bifurcat. Chaos, 2020. DOI: 10.1142/S0218127420500388.

    CrossRef Google Scholar

    [27] Z. Zhang, S. Kundub, J. P. Tripathi and S. Bugalia, Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays, Chaos Solit. Fract., 2020. DOI: 10.1016/j.chaos.2019.109483.

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(2274) PDF downloads(398) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint