2023 Volume 13 Issue 3
Article Contents

Parvin Kumari, Devendra Kumar, Higinio Ramos. PARAMETER INDEPENDENT SCHEME FOR SINGULARLY PERTURBED PROBLEMS INCLUDING A BOUNDARY TURNING POINT OF MULTIPLICITY ≥ 1[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1304-1320. doi: 10.11948/20220123
Citation: Parvin Kumari, Devendra Kumar, Higinio Ramos. PARAMETER INDEPENDENT SCHEME FOR SINGULARLY PERTURBED PROBLEMS INCLUDING A BOUNDARY TURNING POINT OF MULTIPLICITY ≥ 1[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1304-1320. doi: 10.11948/20220123

PARAMETER INDEPENDENT SCHEME FOR SINGULARLY PERTURBED PROBLEMS INCLUDING A BOUNDARY TURNING POINT OF MULTIPLICITY ≥ 1

  • A numerical scheme is developed for parabolic singularly perturbed boundary value problems, including multiple boundary turning points at the left endpoint of the spatial direction. The highest order derivative of these problems is multiplied by a small parameter $ \varepsilon\, (0< \varepsilon\ll 1) $, and when it is close to zero, the solution exhibits a parabolic type boundary layer near the left lateral surface of the domain of consideration. Thus, large oscillations appear when classical/standard numerical methods are used to solve the problem, and one cannot achieve the expected accuracy. Thus, the Crank-Nicolson scheme on a uniform mesh in the temporal direction and an upwind scheme on a Shishkin-type mesh in the spatial direction is constructed. The theoretical analysis shows that the method converges irrespective of the size of $ \varepsilon $ with accuracy $ \mathcal{O}((\Delta t)^2+N^{-1}\ln N) $. Three test examples are presented to verify that the computational results agree with the theoretical ones.

    MSC: 65L10, 65L12, 65L20, 65L70
  • 加载中
  • [1] L. Bobisud, Second-order linear parabolic equations with a small parameter, Arch. Rational Mech. Anal., 1968, 27, 385-397. doi: 10.1007/BF00251441

    CrossRef Google Scholar

    [2] R. K. Dunne, E. O'Riordan and G. I. Shishkin, A fitted mesh method for a class of singularly perturbed parabolic problems with a boundary turning point, Comput. Methods Appl. Math., 2003, 3, 361-372. doi: 10.2478/cmam-2003-0023

    CrossRef Google Scholar

    [3] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman & Hall, London, 2000.

    Google Scholar

    [4] V. Gupta and M. K. Kadalbajoo, A layer adaptive B-spline collocation method for singularly perturbed one-dimensional parabolic problem with a boundary turning point, Numer. Methods Part. Diff. Eqn., 2011, 27, 1143-1164. doi: 10.1002/num.20574

    CrossRef Google Scholar

    [5] T. C. Hanks, Model relating heat-flow values near, and vertical velocities of mass transport beneath, oceanic rises, J. Geophys Res., 1971, 76, 537-544. doi: 10.1029/JB076i002p00537

    CrossRef Google Scholar

    [6] R. B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning point, Math. Comp., 1978, 32, 1025-1039. doi: 10.1090/S0025-5718-1978-0483484-9

    CrossRef Google Scholar

    [7] D. Kumar and P. Kumari, A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay, J. Appl. Math. Comput., 2019, 159, 79-206.

    Google Scholar

    [8] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, USA, 1968.

    Google Scholar

    [9] T. Lin and R. Vulanović, Uniform methods for semi linear problems with an attractive boundary turning point, Novi Sad J. Math., 2001, 31, 99-114.

    Google Scholar

    [10] V. D. Liseikin and V. E. Petrenko, Adaptive-Invariant Method for Numerical Solution of Problems with Boundary and Internal Layers, Novosibirsk, 1989.

    Google Scholar

    [11] V. D. Liseikin, The use of special transformations in the numerical solution of boundary layer problems, USSR Comput. Math. Math. Phys., 1990, 30, 43-53. doi: 10.1016/0041-5553(90)90006-E

    CrossRef Google Scholar

    [12] J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996.

    Google Scholar

    [13] P. Rai and K. K. Sharma, Singularly perturbed parabolic differential equations with turning point and retarded arguments, J. Appl. Math., 2015, 45, 4.

    Google Scholar

    [14] H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singular Perturbed Differential Equations, Springer-Verlag, New York, 1996.

    Google Scholar

    [15] A. A. Samarskii, Theory of Finite-Difference Approximations, Moscow, 1989.

    Google Scholar

    [16] H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1979.

    Google Scholar

    [17] G. I. Shishkin, Grid approximations to singularly perturbed parabolic equations with turning points, Differ. Equn., 2001, 37, 1037-1050. doi: 10.1023/A:1011978225750

    CrossRef Google Scholar

    [18] R. Vulanović, On numerical solution of a mildly nonlinear turning point problem, Math. Model. Num. Anal., 1990, 24, 765-783. doi: 10.1051/m2an/1990240607651

    CrossRef Google Scholar

    [19] R. Vulanović and P. Lin, Numerical solution of quasi linear attractive turning point problems, Comput. Math. Appl., 1992, 23, 75-82.

    Google Scholar

    [20] R. Vulanović and P. A. Farrell, Continuous and numerical analysis of a multiple turning point problem, SIAM J. Numer. Anal., 1993, 30, 1400-1418. doi: 10.1137/0730073

    CrossRef Google Scholar

Figures(5)  /  Tables(7)

Article Metrics

Article views(1816) PDF downloads(276) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint