2022 Volume 12 Issue 3
Article Contents

Xiaoxue Zhang, Chuanjian Wang, Changzhao Li, Lirong Wang. DEGENERATION OF LUMP-TYPE LOCALIZED WAVES IN THE (2+1)-DIMENSIONAL ITO EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1090-1103. doi: 10.11948/20220137
Citation: Xiaoxue Zhang, Chuanjian Wang, Changzhao Li, Lirong Wang. DEGENERATION OF LUMP-TYPE LOCALIZED WAVES IN THE (2+1)-DIMENSIONAL ITO EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1090-1103. doi: 10.11948/20220137

DEGENERATION OF LUMP-TYPE LOCALIZED WAVES IN THE (2+1)-DIMENSIONAL ITO EQUATION

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: wcj20082002@aliyun.com(C. Wang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China(11801240)
  • The degeneration of lump-type localized waves in the (2+1)-dimen-sional Ito equation is investigated through the parallel relationship of wave numbers. These lump-type localized waves can degenerate into three different kinds of localized wave solutions: singular lump-type localized wave, periodic variable amplitude localized wave, rogue wave. In the process of propagation, the lump-type localized waves keep the same waveform structure and amplitude. However, the periodic variable amplitude localized wave demonstrates three different kinds of waveform structures, which presents an interesting emit-absorb interaction phenomenon. By an emitting and absorbing interaction, the localized wave realizes the energy exchange from one localized wave to another, and keeps the original waveform structure. Rogue wave is a rational growing-and-decaying localized wave which is localized in both space and time.

    MSC: 35Q51, 35Q53, 35C99
  • 加载中
  • [1] A. R. Adem, The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions, Comput. Math. Appl., 2016, 71(6), 1248–1258. doi: 10.1016/j.camwa.2016.02.005

    CrossRef Google Scholar

    [2] S. Bhatter, A. Mathur, D. Kumar et al., A new analysis of fractional DrinfeldSokolov-Wilson model with exponential memory, Physica A, 2020, 537, 122578. doi: 10.1016/j.physa.2019.122578

    CrossRef Google Scholar

    [3] S. Chen and X. Lü, Lump and lump-multi-kink solutions in the (3+1)- dimensions, Commun. Nonlinear. Sci. Numer. Simul., 2022, 109, 106103. doi: 10.1016/j.cnsns.2021.106103

    CrossRef Google Scholar

    [4] S. Chen, X. Lü et al., Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations, Phys. Scr., 2021, 96(9), 095201. doi: 10.1088/1402-4896/abf307

    CrossRef Google Scholar

    [5] A. Chabchoub, N. P. Hoffmann and N. Akhmediev, Rogue Wave Observation in a Water Wave Tank, Phys. Rev. Lett., 2011, 106(20), 204502. doi: 10.1103/PhysRevLett.106.204502

    CrossRef Google Scholar

    [6] Y. Feng, B. Sudao and X. Wang, Diverse exact analytical solutions and novel interaction solutions for the (2+ 1)-dimensional Ito equation, Phys. Scr., 2020, 95(9), 095201. doi: 10.1088/1402-4896/aba71b

    CrossRef Google Scholar

    [7] M. Gürses, A. Karasu and V. V. Sokolov, On construction of recursion operators from Lax representation, J. Math. Phys., 1999, 40(12), 6473–6490. doi: 10.1063/1.533102

    CrossRef Google Scholar

    [8] C. He, Y. Tang, W. Ma and J. Ma, Interaction phenomena between a lump and other multi-solitons for the (2+1)-dimensional BLMP and Ito equations, Nonlinear Dyn., 2019, 95(1), 29–42. doi: 10.1007/s11071-018-4548-8

    CrossRef Google Scholar

    [9] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, UK, 2004.

    Google Scholar

    [10] M. Ito, An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc. Jpn., 1980, 49(2), 771–778. doi: 10.1143/JPSJ.49.771

    CrossRef Google Scholar

    [11] X. Lü and S. Chen, New general interaction solutions to the KPI equation via an optional decoupling condition approach, Commun. Nonlinear. Sci. Numer. Simul., 2021, 103, 105939. doi: 10.1016/j.cnsns.2021.105939

    CrossRef Google Scholar

    [12] X. Lü and S. Chen, Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multisoliton types, Nonlinear Dyn., 2021, 103(1), 947–977. doi: 10.1007/s11071-020-06068-6

    CrossRef Google Scholar

    [13] X. Lü, Y. Hua et al., Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws, Commun. Nonlinear. Sci. Numer. Simul., 2021, 95, 105612. doi: 10.1016/j.cnsns.2020.105612

    CrossRef Google Scholar

    [14] Q. Liu, Hamiltonian structures for Ito's equation, Phys. Lett. A, 2000, 277(1), 31–34. doi: 10.1016/S0375-9601(00)00684-8

    CrossRef Google Scholar

    [15] D. Li and J. Zhao, New exact solutions to the (2+1)-dimensional Ito equation: Extended homoclinic test technique, Appl. Math. Comput., 2009, 215(5), 1968– 1974.

    Google Scholar

    [16] W. Ma, X. Yong and H. Zhang, Diversity of interaction solutions to the (2+1)- dimensional Ito equation, Comput. Math. Appl., 2018, 75(1), 289–295. doi: 10.1016/j.camwa.2017.09.013

    CrossRef Google Scholar

    [17] H. Ma, H. Wu, W. Ma and A. Deng, Localized interaction solutions of the (2+1)-dimensional Ito Equation, Opt. Quantum Electron., 2021, 53(6), 1–16.

    Google Scholar

    [18] S. Tian and H. Zhang, Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation, Chaos Solitons Fractals, 2013, 47, 27–41. doi: 10.1016/j.chaos.2012.12.004

    CrossRef Google Scholar

    [19] Y. Tian and Z. Dai, Rogue waves and new multi-wave solutions of the (2+1)- dimensional Ito equation, Z. Naturforsch. A, 2013, 70(6), 437–443.

    Google Scholar

    [20] W. Tan, Z. Dai and H. Dai, Dynamical analysis of lump solution for the (2+1)- dimensional Ito equation, Therm. Sci., 2017, 21(4), 1673–1679. doi: 10.2298/TSCI160812145T

    CrossRef Google Scholar

    [21] W. Tan, Some new dynamical behaviour of double breathers and lump-Nsolitons for the Ito equation, Int. J Comput. Math., 2021, 98(5), 961–974. doi: 10.1080/00207160.2020.1792454

    CrossRef Google Scholar

    [22] X. Tan and Q. Zha, Three wave mixing effect in the (2+1)-dimensional Ito equation, Int. J Comput. Math., 2021, 98(10), 1921–1934. doi: 10.1080/00207160.2020.1867116

    CrossRef Google Scholar

    [23] W. Tan, W. Zhang and J. Zhang, Evolutionary behavior of breathers and interaction solutions with M-solitons for (2+1)-dimensional KdV system, Appl. Math. Lett., 2020, 101, 106063. doi: 10.1016/j.aml.2019.106063

    CrossRef Google Scholar

    [24] A. M. Wazwaz, Multiple-soliton solutions for the generalized (1+1)-dimensional and the generalized (2+1)-dimensional Ito equations, Appl. Math. Comput., 2008, 202(2), 840–849.

    Google Scholar

    [25] X. Wang, S. Tian, C. Qin and T. Zhang, Dynamics of the breathers, rogue waves and solitary waves in the (2+1)-dimensional Ito equation, Appl. Math. Lett., 2017, 68, 40–47. doi: 10.1016/j.aml.2016.12.009

    CrossRef Google Scholar

    [26] L. Wang, C. Liu, M. Li et al., High-dimensional nonlinear wave transitions and their mechanism, Chaos, 2020, 30(11), 113107. doi: 10.1063/5.0019596

    CrossRef Google Scholar

    [27] C. Wang, Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation, Nonlinear Dyn., 2016, 84(2), 697–702. doi: 10.1007/s11071-015-2519-x

    CrossRef Google Scholar

    [28] C. Wang, H. Fang and X. Tang, State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation, Nonlinear Dyn., 2019, 95(4), 2943–2961. doi: 10.1007/s11071-018-04733-5

    CrossRef Google Scholar

    [29] C. Wang, Z. Dai and C. Liu, Interaction Between Kink Solitary Wave and Rogue Wave for (2+1)-Dimensional Burgers Equation, Mediterr. J. Math., 2016, 13(3), 1087–1098. doi: 10.1007/s00009-015-0528-0

    CrossRef Google Scholar

    [30] J. Yang, W. Ma and Z. Qin, Lump and lump-soliton solutions to the (2+1)- dimensional Ito equation, Anal. Math. Phys., 2018, 8(3), 427–436. doi: 10.1007/s13324-017-0181-9

    CrossRef Google Scholar

    [31] Y. Zhang and D. Chen, N-soliton-like solution of Ito equation, Commun. Theor. Phys., 2004, 42(5), 641–644. doi: 10.1088/0253-6102/42/5/641

    CrossRef Google Scholar

    [32] Z. Zhao, Y. Zhang and Z. Han, Symmetry analysis and conservation laws of the Drinfeld-Sokolov-Wilson system, Eur. Phys. J. Plus, 2014, 129(7), 143. doi: 10.1140/epjp/i2014-14143-x

    CrossRef Google Scholar

    [33] Y. Zhang, Y. You, W. Ma and H. Zhao, Resonance of solitons in a coupled higher-order Ito equation, J. Math. Anal. Appl., 2012, 394(1), 121–128. doi: 10.1016/j.jmaa.2012.03.030

    CrossRef Google Scholar

    [34] X. Zhang, C. Wang and Y. Zhou, High-order localized waves in the (2+1)- dimensional Ito equation, Phys. Scr., 2021, 96(7), 075215. doi: 10.1088/1402-4896/abfcf0

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(2418) PDF downloads(421) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint