Citation: | Chang Liu, Jiamin Xing. A NEW PROOF OF MOSER'S THEOREM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1679-1701. doi: 10.11948/20220161 |
In this paper, we consider the persistence of invariant tori for mappings under perturbations. Mainly, we give a new proof of Moser type theorem about invariant tori for twist mappings with intersection property.
[1] | V. I. Arnol'd, Proof of A. N. Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys, 1963, 18, 9-36. doi: 10.1070/RM1963v018n05ABEH004130 |
[2] | C. Cheng and Y. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 1989/90, 47(3), 275-292. |
[3] | F. Cong, Y. Li and M. Huang, Invariant tori for nearly twist mappings with intersection property, Northeast. Math. J., 1996, 12(3), 280-298. |
[4] | L. Chierchia and C. E. Koudjinan, V. I. Arnold's "Global" KAM theorem and geometric measure estimates, Regul. Chaotic Dyn., 2021, 26(1), 61-88. doi: 10.1134/S1560354721010044 |
[5] | R. C. Calleja, A. Celletti and R. de la Llave, KAM quasi-periodic solutions for the dissipative standard map, Commun. Nonlinear Sci. Numer. Simul., 2022, 106(106111), 1-29. |
[6] | M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Astérisque, 1986, 2(144), 1-248. |
[7] | A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR, 1954, 98, 527-530. |
[8] | C. E. Koudjinan, A KAM theorem for finitely differentiable Hamiltonian systems, J. Differential Equations, 2020, 269(6), 4720-4750. doi: 10.1016/j.jde.2020.03.044 |
[9] | M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mapping, Smooth ergodic theory and its applications. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 2001, 69, 733-746. |
[10] | Y. Li and Y. Yi, Persistence of invariant tori in generalized Hamiltonian systems, Ergodic Theory Dynam. Systems, 2002, 22(4), 1233-1261. |
[11] | J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. KI. Ⅱ, 1962 (1962), 1-20. |
[12] | J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1966, 20(3), 265-315. |
[13] | J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. Ⅱ, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1966, 20(3), 499-535. |
[14] | J. Moser, On the construction of almost periodic solutions for ordinary differential equations, 1970 Proc. Internat. Conf. on Functional Analysis and Related Topics, 1969, 60-67. |
[15] | W. Qian, Y. Li and X. Yang, Melnikov's conditions in matrices, J. Dynam. Differential Equations, 2020, 32(4), 1779-1795. doi: 10.1007/s10884-019-09781-y |
[16] | H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Geometric dynamics, 677-718, Lecture Notes in Math., 1007, Springer, Berlin, 1983. |
[17] | N. V. Svanidze, Small perturbations of an integrable dynamical system with an integral invariant, Trudy Mat. Inst. Steklov., 1980, 147, 124-146. |
[18] | M. B. Sevryuk, Partial preservation of the frequencies and Floquet exponents of invariant tori in KAM theory reversible context 2, J. Math. Sci. (N. Y.), 2021, 253(5), 730-753. doi: 10.1007/s10958-021-05265-x |
[19] | F. Trujillo, Uniqueness properties of the KAM curve, Discrete Contin. Dyn. Syst., 2021, 41(11), 5165-5182. doi: 10.3934/dcds.2021072 |
[20] | Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theory Dynam. Systems, 1992, 12(3), 621-631. doi: 10.1017/S0143385700006969 |
[21] | L. Yang and X. Li, Existence of periodically invariant tori on resonant surfaces for twist mappings, Discrete Contin. Dyn. Syst., 2020, 40(3), 1389-1409. doi: 10.3934/dcds.2020081 |
[22] | E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math., 1975, 28, 91-140. |
[23] | E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. Ⅱ, Comm. Pure Appl. Math., 1976, 29(1), 49-111. doi: 10.1002/cpa.3160290104 |