2022 Volume 12 Issue 4
Article Contents

Chang Liu, Jiamin Xing. A NEW PROOF OF MOSER'S THEOREM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1679-1701. doi: 10.11948/20220161
Citation: Chang Liu, Jiamin Xing. A NEW PROOF OF MOSER'S THEOREM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1679-1701. doi: 10.11948/20220161

A NEW PROOF OF MOSER'S THEOREM

  • In this paper, we consider the persistence of invariant tori for mappings under perturbations. Mainly, we give a new proof of Moser type theorem about invariant tori for twist mappings with intersection property.

    MSC: 37E40, 37J40
  • 加载中
  • [1] V. I. Arnol'd, Proof of A. N. Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys, 1963, 18, 9-36. doi: 10.1070/RM1963v018n05ABEH004130

    CrossRef Google Scholar

    [2] C. Cheng and Y. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 1989/90, 47(3), 275-292.

    Google Scholar

    [3] F. Cong, Y. Li and M. Huang, Invariant tori for nearly twist mappings with intersection property, Northeast. Math. J., 1996, 12(3), 280-298.

    Google Scholar

    [4] L. Chierchia and C. E. Koudjinan, V. I. Arnold's "Global" KAM theorem and geometric measure estimates, Regul. Chaotic Dyn., 2021, 26(1), 61-88. doi: 10.1134/S1560354721010044

    CrossRef Google Scholar

    [5] R. C. Calleja, A. Celletti and R. de la Llave, KAM quasi-periodic solutions for the dissipative standard map, Commun. Nonlinear Sci. Numer. Simul., 2022, 106(106111), 1-29.

    Google Scholar

    [6] M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Astérisque, 1986, 2(144), 1-248.

    Google Scholar

    [7] A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR, 1954, 98, 527-530.

    Google Scholar

    [8] C. E. Koudjinan, A KAM theorem for finitely differentiable Hamiltonian systems, J. Differential Equations, 2020, 269(6), 4720-4750. doi: 10.1016/j.jde.2020.03.044

    CrossRef Google Scholar

    [9] M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mapping, Smooth ergodic theory and its applications. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 2001, 69, 733-746.

    Google Scholar

    [10] Y. Li and Y. Yi, Persistence of invariant tori in generalized Hamiltonian systems, Ergodic Theory Dynam. Systems, 2002, 22(4), 1233-1261.

    Google Scholar

    [11] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. KI. Ⅱ, 1962 (1962), 1-20.

    Google Scholar

    [12] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1966, 20(3), 265-315.

    Google Scholar

    [13] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. Ⅱ, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1966, 20(3), 499-535.

    Google Scholar

    [14] J. Moser, On the construction of almost periodic solutions for ordinary differential equations, 1970 Proc. Internat. Conf. on Functional Analysis and Related Topics, 1969, 60-67.

    Google Scholar

    [15] W. Qian, Y. Li and X. Yang, Melnikov's conditions in matrices, J. Dynam. Differential Equations, 2020, 32(4), 1779-1795. doi: 10.1007/s10884-019-09781-y

    CrossRef Google Scholar

    [16] H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Geometric dynamics, 677-718, Lecture Notes in Math., 1007, Springer, Berlin, 1983.

    Google Scholar

    [17] N. V. Svanidze, Small perturbations of an integrable dynamical system with an integral invariant, Trudy Mat. Inst. Steklov., 1980, 147, 124-146.

    Google Scholar

    [18] M. B. Sevryuk, Partial preservation of the frequencies and Floquet exponents of invariant tori in KAM theory reversible context 2, J. Math. Sci. (N. Y.), 2021, 253(5), 730-753. doi: 10.1007/s10958-021-05265-x

    CrossRef Google Scholar

    [19] F. Trujillo, Uniqueness properties of the KAM curve, Discrete Contin. Dyn. Syst., 2021, 41(11), 5165-5182. doi: 10.3934/dcds.2021072

    CrossRef Google Scholar

    [20] Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theory Dynam. Systems, 1992, 12(3), 621-631. doi: 10.1017/S0143385700006969

    CrossRef Google Scholar

    [21] L. Yang and X. Li, Existence of periodically invariant tori on resonant surfaces for twist mappings, Discrete Contin. Dyn. Syst., 2020, 40(3), 1389-1409. doi: 10.3934/dcds.2020081

    CrossRef Google Scholar

    [22] E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math., 1975, 28, 91-140.

    Google Scholar

    [23] E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. Ⅱ, Comm. Pure Appl. Math., 1976, 29(1), 49-111. doi: 10.1002/cpa.3160290104

    CrossRef Google Scholar

Article Metrics

Article views(2938) PDF downloads(501) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint