2024 Volume 14 Issue 3
Article Contents

Mo Faheem, Arshad Khan, Akmal Raza. AN EFFICIENT WAVELET COLLOCATION METHOD BASED ON HERMITE POLYNOMIALS FOR A CLASS OF 2D QUASI-LINEAR ELLIPTIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1198-1221. doi: 10.11948/20220530
Citation: Mo Faheem, Arshad Khan, Akmal Raza. AN EFFICIENT WAVELET COLLOCATION METHOD BASED ON HERMITE POLYNOMIALS FOR A CLASS OF 2D QUASI-LINEAR ELLIPTIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1198-1221. doi: 10.11948/20220530

AN EFFICIENT WAVELET COLLOCATION METHOD BASED ON HERMITE POLYNOMIALS FOR A CLASS OF 2D QUASI-LINEAR ELLIPTIC EQUATIONS

  • A wavelet collocation method based on Hermite polynomials is proposed for the study of a class of 2D quasi-linear elliptic partial differential equations (PDEs) that arise frequently in applied mathematics, electromagnetic theory, nonlinear optics, weather forecasting, etc. The application of Hermite wavelets and their integration to 2D quasi-linear elliptic PDEs yielded a system of equations. For the theoretical aspect, the upper bound of the error norm is established to guarantee the convergence of the method. The proposed approach has an exponential rate of convergence, so it converges very rapidly. The proposed method can be uniformly adapted to investigate the solution of 2D singularly perturbed elliptic PDEs without modifying the current scheme. Some numerical simulations have been done to validate the theoretical findings. The maximum absolute errors are calculated for different numbers of collocation grids. The comparison of numerical findings with the existing methods concludes the superiority of the proposed method.

    MSC: 65T60, 65N35, 65N15
  • 加载中
  • [1] M. P. Alam and A. Khan, A new numerical algorithm for time-dependent singularly perturbed differential-difference convection–diffusion equation arising in computational neuroscience, Comput. Appl. Math., 2022, 41(8), 402. doi: 10.1007/s40314-022-02102-y

    CrossRef Google Scholar

    [2] M. P. Alam, D. Kumar and A. Khan, Trigonometric quintic B-spline collocation method for singularly perturbed turning point boundary value problems, Intern. J. Comput. Math., 2021, 98(5), 1029-1048. doi: 10.1080/00207160.2020.1802016

    CrossRef Google Scholar

    [3] B. Bialecki, G. Fairweather and A. Karageorghis, Matrix decomposition algorithms for modified spline collocation for Helmholtz problems, SIAM J. Sci. Comput., 2003, 24(5), 1733-1753. doi: 10.1137/S106482750139964X

    CrossRef Google Scholar

    [4] B. Bialecki and Z. Wang, Modified nodal cubic spline collocation for elliptic equations, Numer. Methods Partial Differ. Equ., 2012, 28(6), 1817-1839. doi: 10.1002/num.20704

    CrossRef Google Scholar

    [5] C. C. Christara, Quadratic spline collocation methods for elliptic partial differential equations, BIT Numer. Math., 1994, 34(1), 33-61. doi: 10.1007/BF01935015

    CrossRef Google Scholar

    [6] R. Courant and D. Hilbert, Methods of Mathematical Physics: Interscience, New York, 1962, 19532.

    Google Scholar

    [7] L. Demkowicz and N. Heuer, Robust DPG method for convection-dominated diffusion problems, SIAM J. Numer. Anal., 2013, 51(5), 2514-2537. doi: 10.1137/120862065

    CrossRef Google Scholar

    [8] M. Faheem and A. Khan, A collocation method for time-fractional diffusion equation on a metric star graph with $ \eta$ edges, Math. Meth. Appl. Sci., 2023.

    $ \eta$ edges" target="_blank">Google Scholar

    [9] M. Faheem and A. Khan, A wavelet collocation method based on Gegenbauer scaling function for solving fourth-order time-fractional integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 2023, 184, 197-218. doi: 10.1016/j.apnum.2022.10.003

    CrossRef Google Scholar

    [10] M. Faheem, A. Khan and E. El-Zahar, On some wavelet solutions of singular differential equations arising in the modeling of chemical and biochemical phenomena, Adv. Differ. Equa., 2020, 2020, 526. doi: 10.1186/s13662-020-02965-7

    CrossRef Google Scholar

    [11] M. Faheem, A. Khan and Ö. Oruç, A generalized Gegenbauer wavelet collocation method for solving p-type fractional neutral delay differential and delay partial differential equations, Math. Sci., 2022.

    Google Scholar

    [12] M. Faheem, A. Khan and P. J. Wong, A Legendre wavelet collocation method for 1D and 2D coupled time-fractional nonlinear diffusion system, Comput. Math. Appl., 2022, 128, 214-238. doi: 10.1016/j.camwa.2022.10.014

    CrossRef Google Scholar

    [13] M. Faheem, A. Raza and A. Khan, Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations, Math. Comput. Simul., 2021, 180, 72-92. doi: 10.1016/j.matcom.2020.08.018

    CrossRef Google Scholar

    [14] R. Glowinski, Wavelet solution of linear and nonlinear elliptic, Parab. Hyper. Problems One Space Dimen., 1989, 1-79.

    Google Scholar

    [15] A. Hadjidimos, E. N. Houstis, J. R. Rice and E. Vavalis, Iterative line cubic spline collocation methods for elliptic partial differential equations in several dimensions, SIAM J. Sci. Comput., 1993, 14(3), 715-734. doi: 10.1137/0914045

    CrossRef Google Scholar

    [16] M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 2014, 234, 267-276.

    Google Scholar

    [17] E. N. Houstis, E. Vavalis and J. R. Rice, Convergence of O(h. 4) cubic spline collocation methods for elliptic partial differential equations, SIAM J. Numer. Anal., 1988, 25(1), 54-74. doi: 10.1137/0725006

    CrossRef Google Scholar

    [18] M. Jain, R. Jain and R. Mohanty, Fourth-order difference methods for the system of 2D nonlinear elliptic partial differential equations, Numer. Methods Partial Differ. Equ., 1991, 7(3), 227-244. doi: 10.1002/num.1690070303

    CrossRef Google Scholar

    [19] M. K. Jain, R. Jain and R. Mohanty, A fourth-order difference method for elliptic equations with nonlinear first derivative terms, Numer. Methods Partial Differ. Equ., 1989, 5(2), 87-95. doi: 10.1002/num.1690050203

    CrossRef Google Scholar

    [20] N. Jha and N. Kumar, A fourth-order accurate quasi-variable mesh compact finite-difference scheme for two-space dimensional convection-diffusion problems, Adv. Differ. Equ., 2017, 2017(1), 1-13. doi: 10.1186/s13662-016-1057-2

    CrossRef Google Scholar

    [21] A. Khan, M. Faheem and A. Raza, Solution of third-order Emden-Fowler-type equations using wavelet methods, Eng. Comput., 2021.

    Google Scholar

    [22] J. Li, Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer problem, Comput. Math. Appl., 1997, 33(10), 11-22. doi: 10.1016/S0898-1221(97)00073-4

    CrossRef Google Scholar

    [23] J. Li, Global pointwise error estimates for uniformly convergent finite element methods for the elliptic boundary layer problem, Comput. Math. Appl., 1998, 36(1), 59-67. doi: 10.1016/S0898-1221(98)00109-6

    CrossRef Google Scholar

    [24] J. Li and I. M. Navon, Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems Ⅰ: Reaction-diffusion type, Comput. Math. Appl., 1998, 35(3), 57-70. doi: 10.1016/S0898-1221(97)00279-4

    CrossRef Google Scholar

    [25] N. Li, H. Su, D. Gui and X. Feng, Multiquadric RBF-FD method for the convection-dominated diffusion problems base on Shishkin nodes, Int. J. Heat Mass Transf., 2018, 118, 734-745. doi: 10.1016/j.ijheatmasstransfer.2017.11.011

    CrossRef Google Scholar

    [26] R. Mohanty, Order h4 difference methods for a class of singular two space elliptic boundary value problems, J. Comput. Appl. Math., 1997, 81(2), 229-247. doi: 10.1016/S0377-0427(97)00058-7

    CrossRef Google Scholar

    [27] R. Mohanty, A new high accuracy finite difference discretization for the solution of 2D nonlinear biharmonic equations using coupled approach, Numer. Methods Partial Differ. Equ., 2010, 26(4), 931-944. doi: 10.1002/num.20465

    CrossRef Google Scholar

    [28] R. Mohanty, M. Jain and D. Dhall, High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems, Appl. Math. Model., 2013, 37(1-2), 155-171. doi: 10.1016/j.apm.2012.02.020

    CrossRef Google Scholar

    [29] R. Mohanty, G. Manchanda and A. Khan, Compact half step approximation in exponential form for the system of 2D second-order quasi-linear elliptic partial differential equations, J. Differ. Equ. Appl., 2019, 25(5), 716-749. doi: 10.1080/10236198.2019.1624737

    CrossRef Google Scholar

    [30] R. K. Mohanty and N. Setia, A new compact high order off-step discretization for the system of 2D quasi-linear elliptic partial differential equations, Adv. Differ. Equa., 2013, 2013, 223. doi: 10.1186/1687-1847-2013-223

    CrossRef Google Scholar

    [31] Ö. Oruç, A computational method based on Hermite wavelets for two-dimensional Sobolev and regularized long wave equations in fluids, Numer. Methods Partial Differ. Equ., 2018, 34, 1693-1715. doi: 10.1002/num.22232

    CrossRef Google Scholar

    [32] Ö. Oruç, A numerical procedure based on Hermite wavelets for two-dimensional hyperbolic telegraph equation, Eng. Comput., 2018, 34, 741-755. doi: 10.1007/s00366-017-0570-6

    CrossRef Google Scholar

    [33] Ö. Oruç, A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations, Comput. Math. Appl., 2019, 77(7), 1799-1820. doi: 10.1016/j.camwa.2018.11.018

    CrossRef Google Scholar

    [34] S. Qian and J. Weiss, Wavelets and the numerical solution of boundary value problems, Appl. Math. Lett., 1993, 6(1), 47-52. doi: 10.1016/0893-9659(93)90147-F

    CrossRef Google Scholar

    [35] S. Qian and J. Weiss, Wavelets and the numerical solution of partial differential equations, J. Comput. Phy., 1993, 106(1), 155-175. doi: 10.1006/jcph.1993.1100

    CrossRef Google Scholar

    [36] P. Rahimkhani, Y. Ordokhani and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Appl. Math. Model., 2016, 40(17-18), 8087-8107. doi: 10.1016/j.apm.2016.04.026

    CrossRef Google Scholar

    [37] P. Rahimkhani, Y. Ordokhani and E. Babolian, A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations, Nume. Algor., 2017, 74(1), 223-245. doi: 10.1007/s11075-016-0146-3

    CrossRef Google Scholar

    [38] A. Raza, A. Khan, P. Sharma and K. Ahmad, Solution of singularly perturbed differential difference equations and convection delayed dominated diffusion equations using Haar wavelet, Math. Sci., 2021, 15(2), 123-136. doi: 10.1007/s40096-020-00355-4

    CrossRef Google Scholar

    [39] U. Saeed and M. Rehman, Hermite wavelet method for fractional delay differential equations, J. Differ. Equa., 2014, 2014, 359093.

    Google Scholar

    [40] H. Saeedi, M. M. Moghadam, N. Mollahasani and G. Chuev, A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(3), 1154-1163.

    Google Scholar

    [41] G. Saldanha, A fourth-order finite difference scheme for a system of a 2D nonlinear elliptic partial differential equations, Numer. Methods Partial Differ. Equ., 2001, 17(1), 43-53. doi: 10.1002/1098-2426(200101)17:1<43::AID-NUM3>3.0.CO;2-H

    CrossRef Google Scholar

    [42] G. Saldanha and U. Ananthakrishnaiah, A fourth-order finite difference scheme for two-dimensional nonlinear elliptic partial differential equations, Numer. Methods Partial Differ. Equ., 1995, 11(1), 33-40. doi: 10.1002/num.1690110104

    CrossRef Google Scholar

    [43] S. Shiralashetti and S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexan. Eng. Jour., 2018, 57(4), 2591-2600.

    Google Scholar

    [44] S. Singh and S. Singh, High order convergent modified nodal bi-cubic spline collocation method for elliptic partial differential equation, Numer. Methods Partial Differ. Equ., 2020, 36(5), 1028-1043.

    Google Scholar

    [45] Z. Yang and S. Liao, A HAM-based wavelet approach for nonlinear partial differential equations: two dimensional Bratu problem as an application, Commun. Nonlinear Sci. Numer. Simul., 2017, 53, 249-262.

    Google Scholar

    [46] S. A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type, Appl. Math. Comput., 2006, 181(2), 1417-1422.

    Google Scholar

    [47] F. Zhou and X. Xu, The third kind Chebyshev wavelets collocation method for solving the time-fractional convection diffusion equations with variable coefficients, Appl. Math. Comput., 2016, 280, 11-29.

    Google Scholar

Figures(14)  /  Tables(12)

Article Metrics

Article views(1378) PDF downloads(540) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint