Citation: | Murat Çağlar, Halit Orhan, Hari Mohan Srivastava. COEFFICIENT BOUNDS FOR Q-STARLIKE FUNCTIONS ASSOCIATED WITH Q-BERNOULLI NUMBERS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2354-2364. doi: 10.11948/20220566 |
This paper's main goal is to introduce and study a subclass $ \mathcal{S} ^{\ast }(b,q) $ of $ q $-starlike functions in the unit disk defined by the $ q $-Bernoulli numbers. We determine the coefficient bounds, the upper bounds for the Fekete-Szegö functional, and the second Hankel determinant for this subclass.
[1] |
H. Aldweby and M. Darus, Coefficient estimates of classes of $q $-starlike and $q $-convex functions, Advanced Studies in Contemporary Mathematics, 2016, 26(1), 21–26.
$q $-starlike and |
[2] |
W. A. Al-Salam, $q $-Bernoulli numbers and polynomials, Math. Nachr., 1959, 17, 239–260.
$q $-Bernoulli numbers and polynomials" target="_blank">Google Scholar |
[3] | D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc., 1963, 69, 362–366. doi: 10.1090/S0002-9904-1963-10923-4 |
[4] |
L. Carlitz, $q $-Bernoulli numbers and polynomials, Duke Math. J., 1948, 15, 987–1000.
$q $-Bernoulli numbers and polynomials" target="_blank">Google Scholar |
[5] | J. Choi, P. J. Anderson and H. M. Srivastava, Carlitz's $q $-Bernoulli and $q $-Euler numbers and polynomials and a class of $q $-Hurwitz zeta functions, Appl. Math. Comput., 2009, 215, 1185–1208. |
[6] | U. Grenander and G. Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences Univ. California Press, Berkeley, 1958. |
[7] | M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 1990, 14, 77–84. |
[8] | F. H. Jackson, On $q $-definite integrals, Quarterly J. Pure Appl. Math., 1910, 41, 193–203. |
[9] |
F. H. Jackson, On $q $-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 1908, 46, 253–281.
$q $-functions and a certain difference operator" target="_blank">Google Scholar |
[10] | V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002. |
[11] |
N. Koblitz, On Carlitz's $q $-Bernoulli numbers, J. Number Theory, 1982, 14, 332–339. doi: 10.1016/0022-314X(82)90068-3
CrossRef $q $-Bernoulli numbers" target="_blank">Google Scholar |
[12] |
S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan and M. Tahir, A certain subclass of meromorphically $q $-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019, 2019, 88. doi: 10.1186/s13660-019-2020-z
CrossRef $q $-starlike functions associated with the Janowski functions" target="_blank">Google Scholar |
[13] | S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor and S. M. J. Riaz, Some coefficient inequalities of $q $-starlike functions associated with conic domain defined by $q $-derivative, J. Funct. Spaces, 2018, 2018, 1–13. |
[14] |
S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan and I. Ali, Upper bound of the third Hankel determinant for a subclass of $q $-starlike functions, Symmetry, 2019, 11, 347. doi: 10.3390/sym11030347
CrossRef $q $-starlike functions" target="_blank">Google Scholar |
[15] | S. Nalci and O. K. Pashaev, $q $-Bernoulli numbers and zeros of $% q$-Sine function, 2012, arxiv: 1202.2265v1. |
[16] | J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 1976, 223(2), 337–346. |
[17] | Y. Polatoğlu, Growth and distortion theorems for generalized $q $-starlike functions, Advances in Mathematics Scientific Journal, 2016, 5(1), 7–12. |
[18] | C. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975. |
[19] |
C. S. Ryoo, A note on $q $-Bernoulli numbers and polynomials, Appl. Math. Lett., 2007, 20, 524–531. doi: 10.1016/j.aml.2006.05.021
CrossRef $q $-Bernoulli numbers and polynomials" target="_blank">Google Scholar |
[20] |
T. M. Seoudy and M. K. Aouf, Coefficent estimates of new classes $q $-starlike and $q $-convex functions of complex order, Journal of Mathematical Inequalities, 2016, 10(1), 135–145.
$q $-starlike and |
[21] | H. M. Srivastava, Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions, in: H. M. Srivastava, S. Owa (Eds. ), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989, 329–354. |
[22] | H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc., 2000, 129, 77–84. doi: 10.1017/S0305004100004412 |
[23] |
H. M. Srivastava, Some generalizations and basic (or $q $-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 2011, 5, 390–444.
$q $-) extensions of the Bernoulli, Euler and Genocchi polynomials" target="_blank">Google Scholar |
[24] |
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad and N. Khan, Some general classes of $q $-starlike functions associated with the Janowski functions, Symmetry, 2019, 11(2), 1–14.
$q $-starlike functions associated with the Janowski functions" target="_blank">Google Scholar |
[25] |
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad and N. Khan, Some general families of $q $-starlike functions associated with the Janowski functions, Filomat, 2019, 33, 2613–2626.
$q $-starlike functions associated with the Janowski functions" target="_blank">Google Scholar |
[26] |
H. M. Srivastava, B. Khan, N. Khan and Q. Z. Ahmad, Coefficient inequalities for $q $-starlike functions associated with the Janowski functions, Hokkaido Math. J., 2019, 48, 407–425.
$q $-starlike functions associated with the Janowski functions" target="_blank">Google Scholar |
[27] |
H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan and B. Khan, Hankel and Toeplitz determinants for a subclass of $q $-starlike functions associated with a general conic domain, Mathematics, 2019, 7(2), 181.
$q $-starlike functions associated with a general conic domain" target="_blank">Google Scholar |
[28] | H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad and N. Khan, Upper bound for a subclass of $q $-starlike functions associated with the $q $-exponential function, Bull. Sci. Math., 2021, 167, 102942. |
[29] | H. E. Ö. Uçar, Coefficient inequality for $q $-starlike functions, Appl. Math. Comput., 2016, 276, 122–126. |
[30] | B. Wongsaijai and N. Sukantamala, Certain properties of some families of generalized starlike functions with respect to $q $-calculus, Abstr. Appl. Anal., 2016, 2016, 6180140. |