2023 Volume 13 Issue 4
Article Contents

Guozhong Xiu, Bao Shi, Liying Wang. INFLUENCE OF INITIAL RAMP ON CONVOLUTIONAL NONVISCOUS DAMPING MATERIALS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2343-2353. doi: 10.11948/20220564
Citation: Guozhong Xiu, Bao Shi, Liying Wang. INFLUENCE OF INITIAL RAMP ON CONVOLUTIONAL NONVISCOUS DAMPING MATERIALS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2343-2353. doi: 10.11948/20220564

INFLUENCE OF INITIAL RAMP ON CONVOLUTIONAL NONVISCOUS DAMPING MATERIALS

  • Author Bio: Email: xiuguozhong2013@163.com(G. Xiu); Email: ytliyingwang@163.com(L. Wang)
  • Corresponding author: Email: baoshi781@sohu.com(B. Shi) 
  • Fund Project: The authors were supported by Foundation of Key scientific research projects of colleges and universities in Henan Province (23B110013); Zhengzhou Key Laboratory of Intelligent Traffic Video Image Perception and Recognition (Zheng Ke [2020] No.34); Key Project of Zhengzhou University of Industrial Technology 2023ZD005); Henan Province key research and development and promotion special project (science and technology research)(222102210224)
  • In this paper, taking the stress relaxation test of viscoelastic material as an example, the viscoelastic materials used in the test are characterized by the convolutional nonviscous damping model. When the kernel function of the convolutional nonviscous damping model is taken as the power exponential function and the exponential function respectively, the influence of the initial ramp on the stress change is proved theoretically and numerically. This will affect the accuracy of parameter determination of fitting the convolutional nonviscous damping model.

    MSC: O29
  • 加载中
  • [1] T. Abbasi, F. Faraz and S. Abbas, An alternative precise time integration method for structural systems involving a nonviscous damping model, J. Sound Vib., 2022, 541, 117322. doi: 10.1016/j.jsv.2022.117322

    CrossRef Google Scholar

    [2] M. Abu-Shady and M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Mathematical Problems in Engineering, 2021, 2021, 1–9.

    Google Scholar

    [3] S. Adhikari, Damping modelling using generalized proportional damping, J. Sound Vib., 2006, 293(1–2), 156–170. doi: 10.1016/j.jsv.2005.09.034

    CrossRef Google Scholar

    [4] S. Adhikari, Structural dynamic analysis with generalized damping models: analysis, John Wiley & Sons, 2013.

    Google Scholar

    [5] S. Adhikari, D. Karličič and X. Liu, Dynamic stiffness of nonlocal damped nano-beams on elastic foundation, J. European Journal of Mechanics-A/Solids, 2021, 86, 104144.

    Google Scholar

    [6] W. Chen, Fractional Derivative Modeling in Mechanics and Engineering, New York: Springer, 2022.

    Google Scholar

    [7] Z. Ding, L. Zhang and Q. Gao, State-space based discretize-then-differentiate adjoint sensitivity method for transient responses of non-viscously damped systems, J. Computers & Structures, 2021, 250, 106540.

    Google Scholar

    [8] M. Di Paola, On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials, J. Mechanics of Materials, 2014, 69(1), 63–70. doi: 10.1016/j.mechmat.2013.09.017

    CrossRef Google Scholar

    [9] M. Du, Y. Wang and Z. Wang, Effect of the initial ramps of creep and relaxation tests on models with fractional derivatives, J. Meccanica, 2017, 52(15), 3541–3547. doi: 10.1007/s11012-017-0678-1

    CrossRef Google Scholar

    [10] X. Du, W. Guo and H. Xia, Dynamic analysis of the non-viscously damped structure using the superposition of first-order ⅡR filters, J. Mech. Syst. Signal. PR., 2022, 167, 108596. doi: 10.1016/j.ymssp.2021.108596

    CrossRef Google Scholar

    [11] M. Lázaro, Eigensolutions of nonviscously damped systems based on the fixed-point iteration, J. Sound Vib., 2018, 418, 100–121. doi: 10.1016/j.jsv.2017.12.025

    CrossRef Google Scholar

    [12] M. Lázaro and L. García-Raffi, Boundaries of oscillatory motion in structures with nonviscous dampers, J. Appl. Sci., 2022, 12(5), 2478. doi: 10.3390/app12052478

    CrossRef Google Scholar

    [13] M. Lázaro and L. García-Raffi, Critical relationships in nonviscous systems with proportional damping, J. Sound Vib., 2020, 485, 115538. doi: 10.1016/j.jsv.2020.115538

    CrossRef Google Scholar

    [14] L. Li and Y. Hu, Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems, J. Mech. Syst. Signal. PR., 2015, 52, 46–59.

    Google Scholar

    [15] L. Li, R. Lin and T. Y. Ng, A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics, J. Appl. Math. Model., 2020, 84, 116–136. doi: 10.1016/j.apm.2020.03.048

    CrossRef Google Scholar

    [16] J. Richter, F. Jin and L. Knipschild, Exponential damping induced by random and realistic perturbations, Physical Review E, 2020, 101(6), 062133. doi: 10.1103/PhysRevE.101.062133

    CrossRef Google Scholar

    [17] R. Shen, X. Qian and J. Zhou, Characteristics of passive vibration control for exponential non-viscous damping system: Vibration isolator and absorber, J. Vib. Control, 2022, 10775463221130925.

    Google Scholar

    [18] R. Shen, X. Qian and J. Zhou, Study on experimental identification and alternative kernel functions of nonviscous damping, International Journal of Applied Mechanics, 2022, 14(8), 2250062. doi: 10.1142/S1758825122500624

    CrossRef Google Scholar

    [19] W. Shen, C. Zhang and L. Zhang, Stress relaxation behaviour and creep constitutive equations of SA302Gr. C low-alloy steel, J. High Temperature Materials and Processes, 2018, 37(9–10), 857–862. doi: 10.1515/htmp-2017-0090

    CrossRef Google Scholar

    [20] M. Taneco-Hernández, V. Morales-Delgado and J. Gómez-Aguilar, Fractional KuramotošCSivashinsky equation with power law and stretched Mittag-Leffler kernel, Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121085. doi: 10.1016/j.physa.2019.121085

    CrossRef Google Scholar

    [21] G. Teodoro and J. Machado, A review of definitions of fractional derivatives and other operators, Journal of Computational Physics, 2019, 388, 195–208. doi: 10.1016/j.jcp.2019.03.008

    CrossRef Google Scholar

    [22] G. Xiu, B. Shi and F. Qian, Optimal control designs for a class of nonviscously damped systems, Journal of Donghua University, 2020, 37(2), 137–142.

    Google Scholar

    [23] G. Xiu, J. Yuan and B. Shi, Hereditary effects of exponentially damped oscillators with past histories, Journal of Applied Analysis & Computation, 2019, 9(6), 2212–2223.

    Google Scholar

Figures(5)

Article Metrics

Article views(1748) PDF downloads(323) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint