2023 Volume 13 Issue 4
Article Contents

Ronghua Wang, Beiqing Gu, Xiaoling Xu, Shu-Yi Zhang. STUDY OF A GENERALIZED WEIBULL DISTRIBUTION WITH OSCILLATORY FAILURE RATE[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2326-2342. doi: 10.11948/20220544
Citation: Ronghua Wang, Beiqing Gu, Xiaoling Xu, Shu-Yi Zhang. STUDY OF A GENERALIZED WEIBULL DISTRIBUTION WITH OSCILLATORY FAILURE RATE[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2326-2342. doi: 10.11948/20220544

STUDY OF A GENERALIZED WEIBULL DISTRIBUTION WITH OSCILLATORY FAILURE RATE

  • A four-parameter life distribution $ \text{ORS}(\lambda,A,m,\beta) $ with oscillatory failure rate is given, which can be regarded as a generalization of the Weibull distribution. For the three-parameter oscillation type distribution $ \text{ORS}(A,m,\beta) $, the image characteristics of the failure rate are theoretically proved, and the parameter estimation method is given in the whole sample case. Finally, the paper illustrates the feasibility of the method by simulating and practical examples.

    MSC: 62N05
  • 加载中
  • [1] M. A. Aldahlam, F. Jamal, C. Chesneau, Ibrahim Elbatal, Mohamment EIgarhy. Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications, PLOS ONE, 2020, 15(3), 1–25.

    Google Scholar

    [2] A. Amirzadi, E. Baloui Jamkhaneh, E. Deiri, A comparison of estimation methods for reliability function of inverse generalized Weibull distribution under new loss function, Journal of Statistical Computation and Simulation, 2021, 91(13), 2592–2622.

    Google Scholar

    [3] V. M. Areyushenko, V. I. Volovach, Estimation of Motion Intensity of Extended Objects Using Generalized Weibull Distribution, Optoelectronics Instrumentation and Data Processing, 2020, 56(3), 261–268. doi: 10.3103/S8756699020030024

    CrossRef Google Scholar

    [4] G. Aryal, C. Tsokos, Transmuted Weibull distribution: A generalization of the Weibull Probability distribution, European Journal of Pure and Applied Mathematics, 2011, 4(2), 89–102.

    Google Scholar

    [5] M. Bebbington, C. -D. Lai, R. Zitikis, A flexible Weibull extension, Reliability Engineering and System Safety, 2007, 92, 719–726. doi: 10.1016/j.ress.2006.03.004

    CrossRef Google Scholar

    [6] L. Bekker, J. Mi, Shape an crossing properties of mean residual life functions, Statistics & Probability Letters, 2003, 64, 225–234.

    Google Scholar

    [7] J. B. Chakraabarty, S. Chowdhury, Compounded generalized Weibull distributions - A unified approach, Journal of Statistics and Management Systems, 2020, 23(5), 887–913. doi: 10.1080/09720510.2019.1677315

    CrossRef Google Scholar

    [8] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statistics and Probability Letters, 2002, 49, 155–161.

    Google Scholar

    [9] G. M. Cordeirv, E. M. M. Ortega, T. G. Ramires, A new generalized Weibull family of distribution: mathematical properties and applications, Journal of Statistical Distributions and Applications, 2015, 2, 13. doi: 10.1186/s40488-015-0036-6

    CrossRef Google Scholar

    [10] M. R. Gurvieh, A. T. Dibenedetto, S. V. Rande, A new statistical distribution for characterizing the random strength of brittle materials, Journal of Materials Science, 1997, 32, 2559–2564. doi: 10.1023/A:1018594215963

    CrossRef Google Scholar

    [11] H. Hecht, E. Fiorentio, Reliability assessment of spacecraft electronics, Proceedings of the Annual Reliability and Maintainability Symposium, January 1987.

    Google Scholar

    [12] M. C. Jones, A. Noufaily, K. Burke, A bivariate power generalized Weibull distribution: A flexible parametric model for survival analysis, Statistical Methods in Medical Research, 2020, 29(8), 2295–2306. doi: 10.1177/0962280219890893

    CrossRef Google Scholar

    [13] Z. Kang, X. Yao, Experimental research on piston oscillating behavior of fluid in a moonpool with wave-flow, Journal of Harbin Engineering University, 2008, 29(3), 209–216. doi: 10.3969/j.issn.1006-7043.2008.03.002

    CrossRef Google Scholar

    [14] M. Khan, R. King, I. Hudson, Transmuted modified Weibull distribution: Properties and application, European Journal of Pure and Applied Mathematics, 2013, 6(1), 66–88.

    Google Scholar

    [15] C. D. Lai, M. Xie, D. N. P. Murthy, Modified Weibull model, IEEE Transactions on Reliability, 2003, 52(1), 33–37. doi: 10.1109/TR.2002.805788

    CrossRef Google Scholar

    [16] Y. Liu, S. Zhao, Z. Zhao, et al., Life distribution model of products with variable probability density of Exponential attenuation oscillation, Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(3), 449–454.

    Google Scholar

    [17] S. Mirzaei, G. R. Mohtashami Borzadaran, M. Amini, H. Jabbari, A new generalized Weibull distribution in income economic inequality curves, Communications in Statistics-Theory and Methods, 2019, 48(4), 889–908. doi: 10.1080/03610926.2017.1422754

    CrossRef Google Scholar

    [18] G. S. Mudholkar, D.K. Srivastava, Exponentiated Weibull Family for Analyzing Bathtub Failure Rate Data, IEEE Transactions on Reliability, 1993, 42(2), 299–302. doi: 10.1109/24.229504

    CrossRef Google Scholar

    [19] S. Nadarajah, S. Kotz, On some recent modifications of Weibull distribution, IEEE Transactions on Reliability, 2005, 54(4), 561–562. doi: 10.1109/TR.2005.858811

    CrossRef Google Scholar

    [20] S. Nadarajah, E. Ortega, The exponentiated Weibull distribution: a survey, Statistical Papers, 2013, 54(3), 839–877. doi: 10.1007/s00362-012-0466-x

    CrossRef Google Scholar

    [21] R. Pandey, N. Kumari, Bayesian Analysis of Power Generalized Weibull Distribution, International Journal of Applied and Computational Mathematics, 2018, 4, 141.

    Google Scholar

    [22] X. Peng, An extended Weibull model with variable periodicity, Journal of Systems Science and Complexity, 2018, 31, 841–858. doi: 10.1007/s11424-018-7046-7

    CrossRef Google Scholar

    [23] B. Singh, R. U. Khan, M. A. Khan, Characterizations of q-Weibull distribution based on generalized order statistics, Journal of Statistics and Management Systems, 2019, 22(8), 1573–1595. doi: 10.1080/09720510.2019.1643554

    CrossRef Google Scholar

    [24] N. Singla, K. Jain, S. K. Sharma, The Beta Generalized Weibull distribution: properties and applications, Reliability Engineering and System Safety, 2012, 102, 5–15. doi: 10.1016/j.ress.2012.02.003

    CrossRef Google Scholar

    [25] D. Sun, P. Liu, F. Tong, Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer, Acta Aeronautica et Astronautica Sinica, 2020, 41(12), 54–66.

    Google Scholar

    [26] L. C. Tang, Y. Lu, E. P. Chew, Mean residual life of lifetime distributions, IEEE Transactions on Reliability, 1999, 48(1), 73–78. doi: 10.1109/24.765930

    CrossRef Google Scholar

    [27] W. Weibill, A statistical distribution of wide applicability, Journal of Applied Mechanics, 1951, 18, 293–297. doi: 10.1115/1.4010337

    CrossRef Google Scholar

    [28] K. L. Wong, The bathtub does not hold water any more, Quality and Reliability Engineering International, 1988, 4(3), 279–282. doi: 10.1002/qre.4680040311

    CrossRef Google Scholar

    [29] K. L. Wong, The roller-coaster curve is in, Quality and Reliability Engineering International, 1989, 5(1), 29–36.

    Google Scholar

    [30] K. L. Wong, The physical basis for the roller-coaster hazard rate for electronics, Quality and Reliability Engineering International, 1991, 7(6), 489–495.

    Google Scholar

    [31] J. W. Wu, H. L. Lu, C. H. Chen, et al. Statistical inference about the shape parameter of the new-parameter bathtub-shaped lifetime distribution, Quality and Reliability Engineering International, 2004, 20, 607–616.

    Google Scholar

    [32] M. Xie, Y. Tang, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliability Engineering & System Safety, 2002, 76, 279–285.

    Google Scholar

    [33] Z. Zhang, S. Nadarajah, A note on "Parameter estimation for bivariate Weibull distribution using generalized moment method for reliability evaluation", Quality and Reliability Engineering International, 2019, 35, 730–735.

    Google Scholar

Figures(15)

Article Metrics

Article views(1375) PDF downloads(326) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint