2023 Volume 13 Issue 4
Article Contents

Mingjuan Chen, Minjie Shan. A PRIORI ESTIMATES FOR THE FIFTH-ORDER MODIFIED KDV EQUATIONS IN BESOV SPACES WITH LOW REGULARITY[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2315-2325. doi: 10.11948/20220538
Citation: Mingjuan Chen, Minjie Shan. A PRIORI ESTIMATES FOR THE FIFTH-ORDER MODIFIED KDV EQUATIONS IN BESOV SPACES WITH LOW REGULARITY[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2315-2325. doi: 10.11948/20220538

A PRIORI ESTIMATES FOR THE FIFTH-ORDER MODIFIED KDV EQUATIONS IN BESOV SPACES WITH LOW REGULARITY

  • Author Bio: Email: mjchen@jnu.edu.cn(M. Chen)
  • Corresponding author: Email: smj@muc.edu.cn(M. Shan)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 12001236, 12101629) and Natural Science Foundation of Guangdong Province (No. 2020A1515110494)
  • We get a priori estimates for the fifth-order modified KdV equations in Besov spaces with low regularity which cover the full subcritical range. These estimates are obtained from the power series expansion of the perturbation determinant associated to the Lax pair. More precisely, we get the global in time bounds of the $ B^s_{2,r} $ norm of the solution for $ -1/2< s < 1 $, $ 1\leq r\leq \infty $. Then we can obtain the sharp global well-posedness in $ H^s $ for $ s\geq 3/4 $, which is the minimal regularity threshold for which the well-posedness problem can be solved via the contraction principle.

    MSC: 35Q53, 35G25
  • 加载中
  • [1] M. Ablowitz, D. Kaup, A. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 1974, 53(4), 249-315. doi: 10.1002/sapm1974534249

    CrossRef Google Scholar

    [2] B. Bringmann, R. Killip and M. Vişan, Global well-posedness for the fifth-order KdV equation in $H^{-1}(\mathbb{R})$, Ann. PDE, 2021, 7(2), 46.

    $H^{-1}(\mathbb{R})$" target="_blank">Google Scholar

    [3] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 2003, 16(3), 705-749. doi: 10.1090/S0894-0347-03-00421-1

    CrossRef $\mathbb{R}$ and $\mathbb{T}$" target="_blank">Google Scholar

    [4] B. H. Griffiths, R. Killip and M. Vişan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, Preprint, 2020. arXiv: 2003.05011.

    Google Scholar

    [5] M. Ito, An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc. Jpn., 1980, 49(2), 771-778. doi: 10.1143/JPSJ.49.771

    CrossRef Google Scholar

    [6] R. Killip and M. Vişan, KdV is well-posed in $H^{-1}$, Ann. of Math., 2019,190(1), 249-305.

    $H^{-1}$" target="_blank">Google Scholar

    [7] R. Killip, M. Vişan and X. Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., 2018, 28(4), 1062-1090. doi: 10.1007/s00039-018-0444-0

    CrossRef Google Scholar

    [8] F. Klaus and R. Schippa, A priori estimates for the derivative nonlinear Schrödinger equation, Funkcial. Ekvac., 2022, 65(3), 329-346. doi: 10.1619/fesi.65.329

    CrossRef Google Scholar

    [9] S. Kwon, Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electronic J. Differential Equations, 2008, 01, 15.

    Google Scholar

    [10] N. Liu, M. Chen and B. Guo, Long-time asymptotic behavior of the fifth-order modified KdV equation in low regularity spaces, Studies in Applied Mathematics, 2021,147(1), 230-299. doi: 10.1111/sapm.12379

    CrossRef Google Scholar

    [11] Y. Matsuno, Bilinearization of nonlinear evolution equations Ⅱ. Higher-order modified Korteweg-de Vries equations, J. Phys. Soc. Jpn., 1980, 49(2), 787-794. doi: 10.1143/JPSJ.49.787

    CrossRef Google Scholar

    [12] B. Simon, Trace ideals and their applications, Second edition, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2005.

    Google Scholar

    [13] X. Wang, J. Zhang and L. Wang, Conservation laws, periodic and rational solutions for an extended modified Korteweg-de Vries equation, Nonlinear Dyn., 2018, 92(4), 1507-1516. doi: 10.1007/s11071-018-4143-z

    CrossRef Google Scholar

    [14] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Z. Èksper. Teoret. Fiz., 1971, 61(1), 118-134.

    Google Scholar

Article Metrics

Article views(1763) PDF downloads(374) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint