Citation: | Mingjuan Chen, Minjie Shan. A PRIORI ESTIMATES FOR THE FIFTH-ORDER MODIFIED KDV EQUATIONS IN BESOV SPACES WITH LOW REGULARITY[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2315-2325. doi: 10.11948/20220538 |
We get a priori estimates for the fifth-order modified KdV equations in Besov spaces with low regularity which cover the full subcritical range. These estimates are obtained from the power series expansion of the perturbation determinant associated to the Lax pair. More precisely, we get the global in time bounds of the $ B^s_{2,r} $ norm of the solution for $ -1/2< s < 1 $, $ 1\leq r\leq \infty $. Then we can obtain the sharp global well-posedness in $ H^s $ for $ s\geq 3/4 $, which is the minimal regularity threshold for which the well-posedness problem can be solved via the contraction principle.
[1] | M. Ablowitz, D. Kaup, A. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 1974, 53(4), 249-315. doi: 10.1002/sapm1974534249 |
[2] | B. Bringmann, R. Killip and M. Vişan, Global well-posedness for the fifth-order KdV equation in $H^{-1}(\mathbb{R})$, Ann. PDE, 2021, 7(2), 46. |
[3] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 2003, 16(3), 705-749. doi: 10.1090/S0894-0347-03-00421-1
CrossRef $\mathbb{R}$ and |
[4] | B. H. Griffiths, R. Killip and M. Vişan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, Preprint, 2020. arXiv: 2003.05011. |
[5] | M. Ito, An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc. Jpn., 1980, 49(2), 771-778. doi: 10.1143/JPSJ.49.771 |
[6] | R. Killip and M. Vişan, KdV is well-posed in $H^{-1}$, Ann. of Math., 2019,190(1), 249-305. |
[7] | R. Killip, M. Vişan and X. Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., 2018, 28(4), 1062-1090. doi: 10.1007/s00039-018-0444-0 |
[8] | F. Klaus and R. Schippa, A priori estimates for the derivative nonlinear Schrödinger equation, Funkcial. Ekvac., 2022, 65(3), 329-346. doi: 10.1619/fesi.65.329 |
[9] | S. Kwon, Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electronic J. Differential Equations, 2008, 01, 15. |
[10] | N. Liu, M. Chen and B. Guo, Long-time asymptotic behavior of the fifth-order modified KdV equation in low regularity spaces, Studies in Applied Mathematics, 2021,147(1), 230-299. doi: 10.1111/sapm.12379 |
[11] | Y. Matsuno, Bilinearization of nonlinear evolution equations Ⅱ. Higher-order modified Korteweg-de Vries equations, J. Phys. Soc. Jpn., 1980, 49(2), 787-794. doi: 10.1143/JPSJ.49.787 |
[12] | B. Simon, Trace ideals and their applications, Second edition, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2005. |
[13] | X. Wang, J. Zhang and L. Wang, Conservation laws, periodic and rational solutions for an extended modified Korteweg-de Vries equation, Nonlinear Dyn., 2018, 92(4), 1507-1516. doi: 10.1007/s11071-018-4143-z |
[14] | V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Z. Èksper. Teoret. Fiz., 1971, 61(1), 118-134. |