2023 Volume 13 Issue 4
Article Contents

Zhongcai Zhu, Xiaomei Feng, Linchao Hu. GLOBAL DYNAMICS OF A MOSQUITO POPULATION SUPPRESSION MODEL UNDER A PERIODIC RELEASE STRATEGY[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2297-2314. doi: 10.11948/20220501
Citation: Zhongcai Zhu, Xiaomei Feng, Linchao Hu. GLOBAL DYNAMICS OF A MOSQUITO POPULATION SUPPRESSION MODEL UNDER A PERIODIC RELEASE STRATEGY[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2297-2314. doi: 10.11948/20220501

GLOBAL DYNAMICS OF A MOSQUITO POPULATION SUPPRESSION MODEL UNDER A PERIODIC RELEASE STRATEGY

  • Author Bio: Email: zczhu@gzhu.edu.cn(Z. Zhu); Email: xiaomei_0529@126.com(X. Feng)
  • Corresponding author: Email: linchaohu@gzhu.edu.cn (L. Hu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12071095, 12171112) and Shanxi Scholarship Council of China (2022-176)
  • It has been proved that periodic releases of Wolbachia-infected or irradiation-treated mosquitoes is an effective way to suppress wild mosquitoes and prevent the prevalence of mosquito-borne diseases. We have discussed some cases in consideration of the release amount $ c $ and release period $ T $, and in this paper we continue to explore the remaining complementary case and investigate the relevant stability of the origin and the exact number of periodic solutions in the switching model. Based on the release period threshold $ T^* $ introduced in the extant works, we define a new threshold $ T^{**} $ between the sexual lifespan $ \bar{T} $ of sterile mosquitoes and $ T^* $, and reveal the complete dynamics of the model, particularly, no $ T $-periodic solutions when $ T\in(\bar{T}, T^{**}) $, a unique $ T $-periodic solution when $ T = T^{**} $, and exactly two $ T $-periodic solutions when $ T\in(T^{**}, T^*) $. Finally, we give some numerical simulations to seek the approximate value of $ T^{**} $ and demonstrate the global dynamical behaviors of wild mosquito population.

    MSC: 34C25, 34D20, 34D23, 92D25, 93D20
  • 加载中
  • [1] L. Almeida, M. Duprez, Y. Privat and N. Vauchelet, Optimal control strategies for the sterile mosquitoes technique, J. Differential Equations, 2022,311,229-266. doi: 10.1016/j.jde.2021.12.002

    CrossRef Google Scholar

    [2] S. Ai, J. Li, J. Yu and B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(6), 3039-3052. doi: 10.3934/dcdsb.2021172

    CrossRef Google Scholar

    [3] P. A. Bliman and Y. Dumont, Robust control strategy by the sterile insect technique for reducing epidemiological risk in presence of vector migration, Math. Biosci., 2022,350, 108856. doi: 10.1016/j.mbs.2022.108856

    CrossRef Google Scholar

    [4] G. Bian, Y. Xu, P. Lu, Y. Xie and Z. Xi, The endosymbiotic bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathog., 2010, 6(4), e1000833. doi: 10.1371/journal.ppat.1000833

    CrossRef Google Scholar

    [5] L. Cai, S. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 2014, 74(6), 1786-1809. doi: 10.1137/13094102X

    CrossRef Google Scholar

    [6] B. Caputo, R. Moretti, M. Manica, P. Serini, E. Lampazzi, et al., A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area, Pest. Manag. Sci., 2020, 76(4), 1324-1332. doi: 10.1002/ps.5643

    CrossRef Google Scholar

    [7] E. Caspari and G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution, 1959, 13(4), 568-570. doi: 10.2307/2406138

    CrossRef Google Scholar

    [8] H. L. C. Dutra, M. N. Rocha, F. B. S. Dias, S. B. Mansur, E. P. Caragata, et al., Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti Mosquitoes, Cell Host & Microbe, 2016, 19(6), 771-774.

    Google Scholar

    [9] J. Z. Farkas and P. Hinow, Structured and unstructured continuous models for Wolbachia infections, Bull. Math. Biol., 2010, 72(8), 2067-2088. doi: 10.1007/s11538-010-9528-1

    CrossRef Google Scholar

    [10] R. Gato, Z. Menéndez, E. Prieto, R. Argilés, M. Rodríguez, et al., Sterile insect technique: successful suppression of an aegypti field population in Cuba, Insects, 2021, 12(5), 469. doi: 10.3390/insects12050469

    CrossRef Google Scholar

    [11] J. Guo, X. Zheng, D. Zhang and Y. Wu, Current status of mosquito handling, transporting and releasing in frame of the sterile insect technique, Insects, 2022, 13(6), 532. doi: 10.3390/insects13060532

    CrossRef Google Scholar

    [12] M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, Orlando, 2003.

    Google Scholar

    [13] L. Hu, M. Huang, M. Tang, J. Yu and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 2015,106, 32-44. doi: 10.1016/j.tpb.2015.09.003

    CrossRef Google Scholar

    [14] M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 2018,440, 1-11. doi: 10.1016/j.jtbi.2017.12.012

    CrossRef Google Scholar

    [15] M. J. Keeling, F. M. Jiggins and J. M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, 2003, 91(4), 382-388. doi: 10.1038/sj.hdy.6800343

    CrossRef Google Scholar

    [16] P. Kittayapong, S. Ninphanomchai, W. Limohpasmanee, C. Chansang, U. Chansang, et al., Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand, PLoS Negl. Trop. Dis., 2019, 13(10), e0007771. doi: 10.1371/journal.pntd.0007771

    CrossRef Google Scholar

    [17] J. L. Kyle and E. Harris, Global spread and persistence of dengue, Annu. Rev. Microbiol., 2008, 62, 71-92. doi: 10.1146/annurev.micro.62.081307.163005

    CrossRef Google Scholar

    [18] J. Li, Malaria model with stage-structured mosquitoes, Math. Biosci. Eng., 2011, 8(3), 753-768. doi: 10.3934/mbe.2011.8.753

    CrossRef Google Scholar

    [19] J. Li, Simple mathematical models for interacting wild and transgenic mosquito populations, Math. Biosci., 2004,189(1), 39-59. doi: 10.1016/j.mbs.2004.01.001

    CrossRef Google Scholar

    [20] J. Li, L. Cai and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dyn., 2016, 11(1), 79-101.

    Google Scholar

    [21] Y. Li and X. Liu, A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population, J. Theoret. Biol., 2018,448, 53-65. doi: 10.1016/j.jtbi.2018.04.001

    CrossRef Google Scholar

    [22] Y. Liu, F. Jiao and L. Hu, Modeling mosquito population control by a coupled system, J. Math. Anal. Appl., 2022,506(2), 125671. doi: 10.1016/j.jmaa.2021.125671

    CrossRef Google Scholar

    [23] J. W. Mains, C. L. Brelsfoard, R. L. Rose and S. L. Dobson, Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes, Sci. Rep., 2016, 6, 33846. doi: 10.1038/srep33846

    CrossRef Google Scholar

    [24] J. W. Mains, P. H. Kelly, K. L. Dobson, W. D. Petrie and S. L. Dobson, Localized control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via inundative releases of Wolbachia-infected male mosquitoes, J. Med. Entomol., 2019, 56(5), 1296-1303. doi: 10.1093/jme/tjz051

    CrossRef Google Scholar

    [25] E. E. Ooi, K. T. Goh and D. J. Gubler, Dengue prevention and 35 years of vector control in Singapore, Emerg. Infec. Dis., 2006, 12(6), 887-893. doi: 10.3201/eid1206.051210

    CrossRef Google Scholar

    [26] D. Pagendam, N. Snoad, W. Yang, M. Segoli, S. Ritchie, et al., Improving estimates of Fried's index from mating competitiveness experiments, J. Agric. Biol. Environ. Stat., 2018, 23(4), 446-462. doi: 10.1007/s13253-018-0333-x

    CrossRef Google Scholar

    [27] M. A. Tolle, Mosquito-borne diseases, Curr. Probl. Pediatr. Adolesc. Health Care, 2009, 39(4), 97-140. doi: 10.1016/j.cppeds.2009.01.001

    CrossRef Google Scholar

    [28] World Health Organization, Health topics-Dengue and severe dengue, 2021. https://www.who.int/health-topics/dengue-and-severe-dengue#tab = tab_1.

    Google Scholar

    [29] World Mosquito Program, Mosquito-borne diseases. Available at https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases.

    Google Scholar

    [30] J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differential Equations, 2020,269(12), 10395-10415. doi: 10.1016/j.jde.2020.07.019

    CrossRef Google Scholar

    [31] J. Yu and J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 2022, 84(3), 14. doi: 10.1007/s00285-022-01718-2

    CrossRef Google Scholar

    [32] J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 2019, 13(1), 606-620. doi: 10.1080/17513758.2019.1682201

    CrossRef Google Scholar

    [33] J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differential Equations, 2020,269(7), 6193-6215. doi: 10.1016/j.jde.2020.04.036

    CrossRef Google Scholar

    [34] J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Difference Equ. Appl., 2019, 25(11), 1549-1567. doi: 10.1080/10236198.2019.1669578

    CrossRef Google Scholar

    [35] X. Zhang, Q. Liu and H. Zhu, Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control, J. Math. Biol., 2020, 81(1), 1-34. doi: 10.1007/s00285-020-01492-z

    CrossRef Google Scholar

    [36] Z. Zhang and B. Zheng, Dynamics of a mosquito population suppression model with a saturated Wolbachia release rate, Appl. Math. Lett., 2022,129, 107933. doi: 10.1016/j.aml.2022.107933

    CrossRef Google Scholar

    [37] B. Zheng, J. Li and J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 2021, 65(8), 1749-1764.

    Google Scholar

    [38] B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 2014, 74(3), 743-770. doi: 10.1137/13093354X

    CrossRef Google Scholar

    [39] B. Zheng and J. Yu, At most two periodic solutions for a switching mosquito population suppression model, J. Dynam. Differential Equations, 2022. https://doi.org/10.1007/s10884-021-10125-y. doi: 10.1007/s10884-021-10125-y

    CrossRef Google Scholar

    [40] B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 2022, 11(1), 212-224.

    Google Scholar

    [41] B. Zheng, J. Yu, Z. Xi and M. Tang, The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 2018,387(10), 38-48.

    Google Scholar

    [42] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 2019,572(7767), 56-61. doi: 10.1038/s41586-019-1407-9

    CrossRef Google Scholar

    [43] D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, R. Jeremie and L. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 2015, 10(4), e0121126. doi: 10.1371/journal.pone.0121126

    CrossRef Google Scholar

    [44] Z. Zhu, Y. Shi, R. Yan and L. Hu, Periodic orbits of a mosquito suppression model based on sterile mosquitoes, Mathematics, 2022, 10(3), 462. doi: 10.3390/math10030462

    CrossRef Google Scholar

    [45] Z. Zhu, R. Yan and X. Feng, Existence and stability of two periodic solutions for an interactive wild and sterile mosquitoes model, J. Biol. Dyn., 2022, 16(1), 277-293. doi: 10.1080/17513758.2021.2023666

    CrossRef Google Scholar

    [46] Z. Zhu, B. Zheng, Y. Shi, R. Yan and J. Yu, Stability and periodicity in a mosquito population suppression model composed of two sub-models, Nonlinear Dyn., 2022,107(1), 1383-1395. doi: 10.1007/s11071-021-07063-1

    CrossRef Google Scholar

Figures(4)  /  Tables(1)

Article Metrics

Article views(2424) PDF downloads(534) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint