2023 Volume 13 Issue 4
Article Contents

Litao Zhang, Yifan Zhang, Xiaojing Zhang, Jianfeng Zhao. A ACCELERATED MODIFIED SHIFT-SPLITTING METHOD FOR NONSYMMETRIC SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2283-2296. doi: 10.11948/20220473
Citation: Litao Zhang, Yifan Zhang, Xiaojing Zhang, Jianfeng Zhao. A ACCELERATED MODIFIED SHIFT-SPLITTING METHOD FOR NONSYMMETRIC SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2283-2296. doi: 10.11948/20220473

A ACCELERATED MODIFIED SHIFT-SPLITTING METHOD FOR NONSYMMETRIC SADDLE POINT PROBLEMS

  • Recently, Huang and Su [A modified shift-splitting method for nonsymmetric saddle, Journal of Computational and Applied Mathematics, 2017,317,535-546] introduced a modified shift-splitting (denoted by MSSP) preconditioner. In this paper, based on modified shift-splitting (denoted by MSSP) iteration technique, we establish a accelerated (named after AMSSP) iterative method for nonsymmetric saddle point problems. Furthermore, we theoretically verify the AMSSP iteration method unconditionally converges to the unique solution of the saddle point problems, compute the spectral radius of the AMSSP iteration matrix. Finally, numerical examples show the spectrum of the new preconditioned matrix for the different parameters.

    MSC: 65F10, 65F15, 65F50
  • 加载中
  • [1] Z. Bai and L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2013, 20,425-439. doi: 10.1002/nla.1835

    CrossRef Google Scholar

    [2] Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM Journal on Matrix Analysis and Applications, 1999, 21, 67-78. doi: 10.1137/S0895479897324032

    CrossRef Google Scholar

    [3] Z. Bai, The convergence of parallel iteration algorithms for linear complementarity problems, Computers and Mathematics with Applications, 1996, 32, 1-17.

    Google Scholar

    [4] Z. Bai and D. J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems, International Journal of Computer Mathematics, 1997, 63,309-326. doi: 10.1080/00207169708804569

    CrossRef Google Scholar

    [5] Z. Bai, On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem, IMA Journal of Numerical Analysis, 1998, 18,509-518. doi: 10.1093/imanum/18.4.509

    CrossRef Google Scholar

    [6] Z. Bai and D. J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods, Reseaux et systemes repartis: Calculateurs Paralleles, 2001, 13,125-154.

    Google Scholar

    [7] Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2010, 17,917-933. doi: 10.1002/nla.680

    CrossRef Google Scholar

    [8] Z. Bai and L. Zhang, Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems, Numerical Algorithms, 2013, 62, 59-77. doi: 10.1007/s11075-012-9566-x

    CrossRef Google Scholar

    [9] Z. Bai and D. J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods, International Journal of Computer Mathematics, 2002, 79,205-232. doi: 10.1080/00207160211927

    CrossRef Google Scholar

    [10] Z. Bai, Parallel matrix multisplitting block relaxation iteration methods, Mathematica Numerica Sinica, 1995, 3,238-252. doi: 10.12286/jssx.1995.3.238

    CrossRef Google Scholar

    [11] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press: New York, 1979.

    Google Scholar

    [12] L. Cui, X. Zhang and S. Wu, A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with $\mathcal{M}$-tensors, Computers and Mathematics with Applications, 2020, 39,173. https://doi.org/10.1007/s40314-020-01194-8. doi: 10.1007/s40314-020-01194-8

    CrossRef $\mathcal{M}$-tensors" target="_blank">Google Scholar

    [13] L. Cui, M. Li and Y. Song, Preconditioned tensor splitting iterations method for solving multi-linear systems, Applied Mathematics Letters, 2019, 96, 89-94. doi: 10.1016/j.aml.2019.04.019

    CrossRef Google Scholar

    [14] R. W. Cottle, J. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, San Diego, 1992.

    Google Scholar

    [15] J. Dong and M. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numerical Linear Algebra with Applications, 2009, 16,129-143. doi: 10.1002/nla.609

    CrossRef Google Scholar

    [16] M. C. Ferris and J. Pang, Engineering and economic applications of complementarity problems, SIAM Review, 1997, 39,669-713. doi: 10.1137/S0036144595285963

    CrossRef Google Scholar

    [17] A. Frommer and G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra and Its Applications, 1989,119,141-152. doi: 10.1016/0024-3795(89)90074-8

    CrossRef Google Scholar

    [18] A. Hadjidimos, M. Lapidakis and M. Tzoumas, On Iterative Solution for Linear Complementarity Problem with an $H_{+}$-Matrix, SIAM Journal on Matrix Analysis and Applications, 2012, 33, 97-110. doi: 10.1137/100811222

    CrossRef $H_{+}$-Matrix" target="_blank">Google Scholar

    [19] A. Hadjidimos and M. Tzoumas, Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem, Linear Algebra and Its Applications, 2009,431,197-210. doi: 10.1016/j.laa.2009.02.024

    CrossRef Google Scholar

    [20] D. Jiang, W. Li and H. Lv, An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications, Neurocomputing, 2017,220,160-169. doi: 10.1016/j.neucom.2016.07.056

    CrossRef Google Scholar

    [21] D. Jiang, Y. Wang, Y. Han and H. Lv, Maximum connectivity-based channel allocation algorithm in cognitive wireless networks for medical applications, Neurocomputing, 2017,220, 41-51. doi: 10.1016/j.neucom.2016.05.102

    CrossRef Google Scholar

    [22] D. Jiang, Z. Xu, W. Li, et al., An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks, Journal of Communications and Networks, 2016, 18(5), 713-724. doi: 10.1109/JCN.2016.000101

    CrossRef Google Scholar

    [23] D. Jiang, Z. Xu, J. Liu and W. Zhao, An optimization-based robust routing algorithm to energy-efficient networks for cloud computing, Telecommunication Systems, 2016, 63(1), 89-98. doi: 10.1007/s11235-015-9975-y

    CrossRef Google Scholar

    [24] D. Jiang, Z. Xu and Z. Lv, A multicast delivery approach with minimum energy consumption for wireless multi-hop networks, Telecommunication Systems, 2016, 62(4), 771-782. doi: 10.1007/s11235-015-0111-9

    CrossRef Google Scholar

    [25] D. Jiang, L. Nie, Z. Lv and H. Song, Spatio-temporal Kronecker compressive sensing for traffic matrix recovery, IEEE Access, 2016, 4, 3046-3053. doi: 10.1109/ACCESS.2016.2573264

    CrossRef Google Scholar

    [26] W. Li, A general modulus-based matrix splitting method for linear complementarity problems of H-matrices, Applied Mathematics Letters, 2013, 26, 1159-1164. doi: 10.1016/j.aml.2013.06.015

    CrossRef Google Scholar

    [27] Y. Li, X. Wang and C. Sun, Convergence analysis of linear complementarity problems based on synchronous block multisplitting iteration methods, Journal of Nanchang University, Natural Science, 2013, 37,307-312.

    Google Scholar

    [28] F. Robert, M. Charnay and F. Musy, Iterations chaotiques serie-parallel pour des equations non-lineaires de point fixe, Matematiky, 1975, 20, 1-38.

    Google Scholar

    [29] Y. Song, Convergence of Block AOR Iterative Methods, Mathematica Applicata, 1993, 1, 39-45.

    Google Scholar

    [30] R. S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin and Heidelberg, 2000.

    Google Scholar

    [31] W. M. G. van Bokhoven, Piecewise-Linear Modelling and Analysis, Proefschrift, Eindhoven, 1981.

    Google Scholar

    [32] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1972.

    Google Scholar

    [33] L. Zhang and Z. Ren, Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems, Applied Mathematics Letters, 2013, 26,638-642. doi: 10.1016/j.aml.2013.01.001

    CrossRef Google Scholar

    [34] L. Zhang, T. Huang, S. Cheng and T. Gu, The weaker convergence of non-stationary matrix multisplitting methods for almost linear systems, Taiwanese Journal of Mathematics, 2011, 15, 1423-1436.

    Google Scholar

    [35] L. Zhang and J. Li, The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems, Computers and Mathematics with Application, 2014, 67, 1954-1959. doi: 10.1016/j.camwa.2014.04.018

    CrossRef Google Scholar

    [36] L. Zhang, T. Huang and T. Gu, Global relaxed non-stationary multisplitting multi-parameters methods, International Journal of Computer Mathematics, 2008, 85,211-224. doi: 10.1080/00207160701405451

    CrossRef Google Scholar

    [37] L. Zhang, T. Huang, T. Gu and X. Guo, Convergence of relaxed multisplitting USAOR method for an H-matrix, Applied Mathematics and Computation, 2008,202,121-132. doi: 10.1016/j.amc.2008.01.034

    CrossRef Google Scholar

    [38] L. Zhang, T. Huang and T. Gu, Convergent improvement of SSOR multisplitting method, Journal of Computational and Applied Mathematics, 2009,225,393-397. doi: 10.1016/j.cam.2008.07.051

    CrossRef Google Scholar

    [39] L. Zhang, T. Huang, S. Cheng, T. Gu and Y. Wang, A note on parallel multisplitting TOR method of an H-matrix, International Journal of Computer Mathematics, 2011, 88,501-507. doi: 10.1080/00207160903501917

    CrossRef Google Scholar

    [40] L. Zhang, X. Zuo, T. Gu and X. Liu, Improved convergence theorems of multisplitting methods for the linear complementarity problem, Applied Mathematics and Computation, 2014,243,982-987. doi: 10.1016/j.amc.2014.06.038

    CrossRef Google Scholar

    [41] L. Zhang, J. Li, T. Gu and X. Liu, Convergence of relaxed matrix multisplitting chaotic methods for H-matrices, Journal of Applied Mathematics, 2014, 2014, 9.

    Google Scholar

    [42] L. Zhang, Y. Zhou, T. Gu and X. Liu, Convergence improvement of relaxed multisplitting USAOR methods for H-matrices linear systems, Applied Mathematics and Computation, 2014,247,225-232. doi: 10.1016/j.amc.2014.08.106

    CrossRef Google Scholar

Figures(7)  /  Tables(4)

Article Metrics

Article views(1600) PDF downloads(299) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint