2023 Volume 13 Issue 6
Article Contents

Le Thi Mai Thanh, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long. FINITE-TIME BLOW UP OF SOLUTIONS FOR A FOURTH-ORDER VISCOELASTIC WAVE EQUATION WITH DAMPING TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3558-3591. doi: 10.11948/20230162
Citation: Le Thi Mai Thanh, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long. FINITE-TIME BLOW UP OF SOLUTIONS FOR A FOURTH-ORDER VISCOELASTIC WAVE EQUATION WITH DAMPING TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3558-3591. doi: 10.11948/20230162

FINITE-TIME BLOW UP OF SOLUTIONS FOR A FOURTH-ORDER VISCOELASTIC WAVE EQUATION WITH DAMPING TERMS

  • In this paper, a class of fourth-order viscoelastic wave equations with damping terms is studied. First, the local existence and uniqueness of weak solutions for the proposed problem are proved by the linear approximation and the Faedo-Galerkin method. Next, a special case of the original problem is considered. Then, under some suitablely sufficient conditions on the relaxation functions and by using contrary arguments, we show that the corresponding problem in this case does not admit any global solutions. Ultimately, we prove the finite-time blow up of solutions in case of negative initial energy.

    MSC: 35A01, 35A02, 35G31, 35L35
  • 加载中
  • [1] L. An and A. Peirce, A weakly nonlinear analysis of elastoplastic-microstructure models, SIAM J. Appl. Math., 1995, 55, 136-155. doi: 10.1137/S0036139993255327

    CrossRef Google Scholar

    [2] K. Anaya, S. A. Messaoudi and K. Mustapha, Decay rate of a weakly dissipative viscoelastic plate equation with infinite memory, Arab. J. Math., 2021, 10, 31-39. doi: 10.1007/s40065-020-00295-w

    CrossRef Google Scholar

    [3] H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 1995, 22, 465-472.

    Google Scholar

    [4] G. Chen and B. Lu, The initial-boundary value problems for a class of nonlinear wave equations with damping term, J. Math. Anal. Appl., 2009, 351, 1-15. doi: 10.1016/j.jmaa.2008.08.027

    CrossRef Google Scholar

    [5] H. Di, Y. Shang and J. Yu, Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source, Electron. Res. Arch., 2020, 28, 221-261. doi: 10.3934/era.2020015

    CrossRef Google Scholar

    [6] J. A. Esquivel-Avila, Dynamics around the ground state of a nonlinear evolution equation, Nonlinear Anal., 2005, 63, 331-343. doi: 10.1016/j.na.2005.02.108

    CrossRef Google Scholar

    [7] B. Geveci and J. D. A. Walker, Nonlinear resonance of rectangular plates, Proc. R. Soc. Lond. A, 2002, 457, 1215-1240.

    Google Scholar

    [8] M. Hajdukiewics, On existence and stability of forced periodic oscillations for a rod in the viscous fluid, DemonStreet Math., 2004, 37, 91-100.

    Google Scholar

    [9] A. Khelghati and K. Baghaei, Blowup phenomena for a class of fourth order nonlinear wave equations with a viscous damping term, Math. Methods Appl. Sci., 2018, 41, 490-494. doi: 10.1002/mma.3623

    CrossRef Google Scholar

    [10] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969.

    Google Scholar

    [11] H. B. Lan, L. T. Thanh, N. T. Long, N. T. Bang, T. L. Cuong and T. N. Minh, On the nonlinear vibrations equation with a coefficient containing an integral, Comput. Maths. Math. Phys., 1993, 33, 1171-1178.

    Google Scholar

    [12] W. Lian, V. D. Rădulescu, R. Xu, Y. Yang and N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 2021, 14, 589-611. doi: 10.1515/acv-2019-0039

    CrossRef Google Scholar

    [13] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969.

    Google Scholar

    [14] X. Liu and J. Zhou, Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity, Electron. Res. Arch., 2020, 28, 599-625. doi: 10.3934/era.2020032

    CrossRef Google Scholar

    [15] Y. Liu, J. Mu and Y. Jiao, A class of fourth order damped wave equations with arbitrary positive initial energy, Proc. Edinburgh Math. Soc., 2019, 62, 165-178. doi: 10.1017/S0013091518000330

    CrossRef Google Scholar

    [16] Y. Liu and R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 2007, 331, 585-607. doi: 10.1016/j.jmaa.2006.09.010

    CrossRef Google Scholar

    [17] Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equ., 2008, 244, 200-228. doi: 10.1016/j.jde.2007.10.015

    CrossRef Google Scholar

    [18] N. T. Long and T. M. Thuyet, On the existence, uniqueness of solution of the nonlinear vibrations equation, Demonstr. Math., 1999, 32, 749-758.

    Google Scholar

    [19] S. E. Mukiawa, Decay result for a delay viscoelastic plate equation, Bol. Soc. Bras. Mat., 2020, 51, 333-356.

    Google Scholar

    [20] L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal. TMA., 2009, 70, 3943-3965. doi: 10.1016/j.na.2008.08.004

    CrossRef Google Scholar

    [21] A. Ouaoua and W. Boughamsa, Well-posedness and stability results for a class of nonlinear fourth-order wave equation with variable-exponents, Int. J. Nonlinear Anal. Appl., 2023, 14, 1769-1785.

    Google Scholar

    [22] A. Ouaoua, A. Khaldi and M. Maouni, Existence and stability results of a nonlinear Timoshenko equation with damping and source terms, Theor. Appl. Mech., 2021, 48, 53-66. doi: 10.2298/TAM200703002O

    CrossRef Google Scholar

    [23] M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman Higher Education, London, UK, 1987.

    Google Scholar

    [24] R. E. Showalter, Hilbert space methods for partial differential equations, Electron. J. Differ. Equ. Monograph, 1994, 1.

    Google Scholar

    [25] M. A. J. Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory, J. Math. Phys., 2013, 54, Article ID 021505.

    Google Scholar

    [26] M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type, IMA J. Appl. Math., 2013, 78, 1130-1146. doi: 10.1093/imamat/hxs011

    CrossRef Google Scholar

    [27] Y. Wang, F. Wu and Y. Yang, Arbitrarily positive initial energy blowup and blowup time for some fourth-order viscous wave equation, Nonlinear Anal., 2020, 196, 111776. doi: 10.1016/j.na.2020.111776

    CrossRef Google Scholar

    [28] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 1950, 17, 17-39.

    Google Scholar

    [29] S. Wu and L. Tsai, Existence and nonexistence of global solutions for a nonlinear wave equation, Taiwanese J. Math., 2009, 13, 2069-2091.

    Google Scholar

    [30] R. Xu, S. Wang, Y. Yang and Y. Ding, Initial boundary value problem for a class of fourth order wave equation with viscous damping term, Appl. Anal., 2013, 92, 1403-1416. doi: 10.1080/00036811.2012.682058

    CrossRef Google Scholar

    [31] R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 2018, 59, 061503. doi: 10.1063/1.5006728

    CrossRef Google Scholar

    [32] C. Yang and Y. Yang, Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term, Discrete Contin. Dyn. Syst. - S., 2021, 14, 4643-4658. doi: 10.3934/dcdss.2021110

    CrossRef Google Scholar

    [33] C. Yang, V. D. Rădulescu, R. Xu and M. Zhang, Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models, Adv. Nonlinear Stud., 2022, 22, 436-468. doi: 10.1515/ans-2022-0024

    CrossRef Google Scholar

    [34] Z. Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differ. Equ., 2003, 187, 520-540. doi: 10.1016/S0022-0396(02)00042-6

    CrossRef Google Scholar

    [35] W. F. Zhao and W. J. Liu, A note on blowup of solutions for a class of fourth order wave equation with viscous damping term, Appl. Anal., 2018, 97, 1496-1504. doi: 10.1080/00036811.2017.1313410

    CrossRef Google Scholar

Article Metrics

Article views(1956) PDF downloads(300) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint