Citation: | Le Thi Mai Thanh, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long. FINITE-TIME BLOW UP OF SOLUTIONS FOR A FOURTH-ORDER VISCOELASTIC WAVE EQUATION WITH DAMPING TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3558-3591. doi: 10.11948/20230162 |
In this paper, a class of fourth-order viscoelastic wave equations with damping terms is studied. First, the local existence and uniqueness of weak solutions for the proposed problem are proved by the linear approximation and the Faedo-Galerkin method. Next, a special case of the original problem is considered. Then, under some suitablely sufficient conditions on the relaxation functions and by using contrary arguments, we show that the corresponding problem in this case does not admit any global solutions. Ultimately, we prove the finite-time blow up of solutions in case of negative initial energy.
[1] | L. An and A. Peirce, A weakly nonlinear analysis of elastoplastic-microstructure models, SIAM J. Appl. Math., 1995, 55, 136-155. doi: 10.1137/S0036139993255327 |
[2] | K. Anaya, S. A. Messaoudi and K. Mustapha, Decay rate of a weakly dissipative viscoelastic plate equation with infinite memory, Arab. J. Math., 2021, 10, 31-39. doi: 10.1007/s40065-020-00295-w |
[3] | H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 1995, 22, 465-472. |
[4] | G. Chen and B. Lu, The initial-boundary value problems for a class of nonlinear wave equations with damping term, J. Math. Anal. Appl., 2009, 351, 1-15. doi: 10.1016/j.jmaa.2008.08.027 |
[5] | H. Di, Y. Shang and J. Yu, Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source, Electron. Res. Arch., 2020, 28, 221-261. doi: 10.3934/era.2020015 |
[6] | J. A. Esquivel-Avila, Dynamics around the ground state of a nonlinear evolution equation, Nonlinear Anal., 2005, 63, 331-343. doi: 10.1016/j.na.2005.02.108 |
[7] | B. Geveci and J. D. A. Walker, Nonlinear resonance of rectangular plates, Proc. R. Soc. Lond. A, 2002, 457, 1215-1240. |
[8] | M. Hajdukiewics, On existence and stability of forced periodic oscillations for a rod in the viscous fluid, DemonStreet Math., 2004, 37, 91-100. |
[9] | A. Khelghati and K. Baghaei, Blowup phenomena for a class of fourth order nonlinear wave equations with a viscous damping term, Math. Methods Appl. Sci., 2018, 41, 490-494. doi: 10.1002/mma.3623 |
[10] | V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969. |
[11] | H. B. Lan, L. T. Thanh, N. T. Long, N. T. Bang, T. L. Cuong and T. N. Minh, On the nonlinear vibrations equation with a coefficient containing an integral, Comput. Maths. Math. Phys., 1993, 33, 1171-1178. |
[12] | W. Lian, V. D. Rădulescu, R. Xu, Y. Yang and N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 2021, 14, 589-611. doi: 10.1515/acv-2019-0039 |
[13] | J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[14] | X. Liu and J. Zhou, Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity, Electron. Res. Arch., 2020, 28, 599-625. doi: 10.3934/era.2020032 |
[15] | Y. Liu, J. Mu and Y. Jiao, A class of fourth order damped wave equations with arbitrary positive initial energy, Proc. Edinburgh Math. Soc., 2019, 62, 165-178. doi: 10.1017/S0013091518000330 |
[16] | Y. Liu and R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 2007, 331, 585-607. doi: 10.1016/j.jmaa.2006.09.010 |
[17] | Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equ., 2008, 244, 200-228. doi: 10.1016/j.jde.2007.10.015 |
[18] | N. T. Long and T. M. Thuyet, On the existence, uniqueness of solution of the nonlinear vibrations equation, Demonstr. Math., 1999, 32, 749-758. |
[19] | S. E. Mukiawa, Decay result for a delay viscoelastic plate equation, Bol. Soc. Bras. Mat., 2020, 51, 333-356. |
[20] | L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal. TMA., 2009, 70, 3943-3965. doi: 10.1016/j.na.2008.08.004 |
[21] | A. Ouaoua and W. Boughamsa, Well-posedness and stability results for a class of nonlinear fourth-order wave equation with variable-exponents, Int. J. Nonlinear Anal. Appl., 2023, 14, 1769-1785. |
[22] | A. Ouaoua, A. Khaldi and M. Maouni, Existence and stability results of a nonlinear Timoshenko equation with damping and source terms, Theor. Appl. Mech., 2021, 48, 53-66. doi: 10.2298/TAM200703002O |
[23] | M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman Higher Education, London, UK, 1987. |
[24] | R. E. Showalter, Hilbert space methods for partial differential equations, Electron. J. Differ. Equ. Monograph, 1994, 1. |
[25] | M. A. J. Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory, J. Math. Phys., 2013, 54, Article ID 021505. |
[26] | M. A. J. Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type, IMA J. Appl. Math., 2013, 78, 1130-1146. doi: 10.1093/imamat/hxs011 |
[27] | Y. Wang, F. Wu and Y. Yang, Arbitrarily positive initial energy blowup and blowup time for some fourth-order viscous wave equation, Nonlinear Anal., 2020, 196, 111776. doi: 10.1016/j.na.2020.111776 |
[28] | S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 1950, 17, 17-39. |
[29] | S. Wu and L. Tsai, Existence and nonexistence of global solutions for a nonlinear wave equation, Taiwanese J. Math., 2009, 13, 2069-2091. |
[30] | R. Xu, S. Wang, Y. Yang and Y. Ding, Initial boundary value problem for a class of fourth order wave equation with viscous damping term, Appl. Anal., 2013, 92, 1403-1416. doi: 10.1080/00036811.2012.682058 |
[31] | R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 2018, 59, 061503. doi: 10.1063/1.5006728 |
[32] | C. Yang and Y. Yang, Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term, Discrete Contin. Dyn. Syst. - S., 2021, 14, 4643-4658. doi: 10.3934/dcdss.2021110 |
[33] | C. Yang, V. D. Rădulescu, R. Xu and M. Zhang, Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models, Adv. Nonlinear Stud., 2022, 22, 436-468. doi: 10.1515/ans-2022-0024 |
[34] | Z. Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differ. Equ., 2003, 187, 520-540. doi: 10.1016/S0022-0396(02)00042-6 |
[35] | W. F. Zhao and W. J. Liu, A note on blowup of solutions for a class of fourth order wave equation with viscous damping term, Appl. Anal., 2018, 97, 1496-1504. doi: 10.1080/00036811.2017.1313410 |