Citation: | Biao Zeng, Shuhua Wang. EXISTENCE FOR NONLINEAR FRACTIONAL EVOLUTIONARY EQUATIONS INVOLVING $\psi$-CAPUTO FRACTIONAL DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1414-1433. doi: 10.11948/20230243 |
The aim of this paper to deal with a new class of fractional evolutionary equations involving $\psi$-Caputo fractional derivative and nonlinear weakly continuous operators. Exploiting the Rothe method and using a surjectivity result for weakly continuous operators, the solvability for the problem is established. The result is applied to a quasistatic frictional contact problem.
[1] | C. T. Anh and T. M. Nguyet, Optimal control of the instationary three dimensional Navier-Stokes-Voigt equations, Numerical Functional Analysis and Optimization, 2016, 37(4), 415–439. doi: 10.1080/01630563.2015.1136891 |
[2] | C. T. Anh and P. T. Trang, Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains, Proc. Royal Soc. Edinburgh Sect. A, 2013, 143, 223–251. doi: 10.1017/S0308210511001491 |
[3] | K. Balachandran and J. Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Analysis, 2009, 71, 4471–4475. doi: 10.1016/j.na.2009.03.005 |
[4] | K. Balachandran and J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Analysis, 2010, 72, 4587–4593. doi: 10.1016/j.na.2010.02.035 |
[5] | C. Carstensen and J. Gwinner, A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems, Ann. Mat. Pura Appl., 1999, 177, 363–394. doi: 10.1007/BF02505918 |
[6] | A. O. Celebi, V. K. Kalantarov and M. Polat, Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain, Applicable Analysis, 2009, 88, 381–392. doi: 10.1080/00036810902766682 |
[7] | P. Contantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. |
[8] | S. Dudek, P. Kalita and S. Migórski, Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions, Zeit. Ange. Math. Phys., 2015, 66(5), 2625–2646. doi: 10.1007/s00033-015-0545-7 |
[9] | S. Dudek, P. Kalita and S. Migórski, Stationary Oberbeck-Boussinesq model of generalized Newtonian fluid governed by a system of multivalued partial differential equations, Applicable Analysis, 2017, 96(13), 2192–2217. doi: 10.1080/00036811.2016.1209743 |
[10] | E. Y. Fan, C. P. Li and M. Stynes, Discretized general fractional derivative, Mathematics and Computers in Simulation, 2023, 208, 501–534. doi: 10.1016/j.matcom.2023.01.030 |
[11] | J. Francǔ, Weakly continuous operators, Applications to differential equations, Application of Mathematics, 1994, 39(1), 45–56. doi: 10.21136/AM.1994.134242 |
[12] | J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations, Nonlinearity, 2012, 25, 905–930. doi: 10.1088/0951-7715/25/4/905 |
[13] | J. F. Han, C. P. Li and S. D. Zeng, Applications of generalized fractional hemivariational inequalities in solid viscoelastic contact mechanics, Communications in Nonlinear Science and Numerical Simulation, 2022, 115, 106718. doi: 10.1016/j.cnsns.2022.106718 |
[14] | J. F. Han, S. Migórski and H. D. Zeng, Weak solvability of a fractional viscoelastic frictionless contact problem, Appl. Math. Comput., 2017, 303, 1–18. |
[15] | W. M. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, vol. 30, Studies in Advanced Mathematics, Providence, RI, International Press, Americal Mathematical Society, 2002. |
[16] | E. Hernández, D. O'Regan and E. Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Analysis, 2010, 73, 3462–3471. doi: 10.1016/j.na.2010.07.035 |
[17] | R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[18] | J. Kačur, Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik 80, B. G. Teubner, Leipzig, 1985. |
[19] | V. K. Kalantarov and E. S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 2009, 30, 697–714. doi: 10.1007/s11401-009-0205-3 |
[20] | V. K. Kalantarov and E. S. Titi, Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 2009, 19, 133–152. doi: 10.1007/s00332-008-9029-7 |
[21] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elservier Science B.V., Amsterdam, 2006. |
[22] | V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis, 2008, 69, 2677–2682. doi: 10.1016/j.na.2007.08.042 |
[23] | C. P. Li and M. Cai, Theory and Numerical Approximations of Fractional Integrals and Derivatives, SIAM, Philadelphia, 2020. |
[24] |
C. P. Li and Z. Q. Li, The finite-time blow-up for semilinear fractional diffusion equations with time $\psi$-Caputo derivative, Journal of Nonlinear Science, 2022, 32(6), article 82. doi: 10.1007/s00332-022-09841-6
CrossRef $\psi$-Caputo derivative" target="_blank">Google Scholar |
[25] |
C. P. Li and Z. Q. Li, Stability and $\psi$-algebraic decay of the solution to $\psi$-fractional differential system. Int. J. Nonlinear Sci. Numer. Simul., 2023, 24, 695–733. doi: 10.1515/ijnsns-2021-0189
CrossRef $\psi$-algebraic decay of the solution to |
[26] | X. C. Li, X. Y. Yang and Y. H. Zhang, Error estimates of mixed finite element methods for time-fractional Navier–Stokes equations, J. Sci. Comput., 2017, 70, 500–515. doi: 10.1007/s10915-016-0252-3 |
[27] | G. Łukaszewicz and P. Kalita, Navier-Stokes Equations, An Introduction with Applications, Advances in Mechanics and Mathematics 34, Springer, New York, 2016. |
[28] | L. Peng, A. Debbouche and Y. Zhou, Existence and approximations of solutions for time-fractional Navier-Stokes equations, Mathe. Meth. Appl. Scien., 2018, 41(18), 8973–8984. doi: 10.1002/mma.4779 |
[29] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[30] | T. Roubiček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, Boston, Berlin, 2005. |
[31] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[32] | S. Shen, F. Liu, J. Chen, I. Turner and V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 2012, 218, 10861–10870. |
[33] | M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society, Lecture Note Series, 398, Cambridge University Press, 2012. |
[34] | W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000. |
[35] | R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, New York, 2001. |
[36] | B. Yin and B. Zeng, A note on a very recent paper 〝Feedback control for nonlinear evolutionary equations with applications'', Nonli. Anal. RWA, 2023, 72, 103857. doi: 10.1016/j.nonrwa.2023.103857 |
[37] | B. Yin and B. Zeng, Optimal control and feedback control for nonlinear impulsive evolutionary equations, Quaestiones Mathematicae, 2023, 2023, 1–24. |
[38] | B. Zeng, Feedback control for nonlinear evolutionary equations with applications, Nonli. Anal. RWA, 2022, 66, 103535. doi: 10.1016/j.nonrwa.2022.103535 |
[39] | B. Zeng, Existence for a class of time-fractional evolutionary equations with applications involving weakly continuous operator, Fract. Calc. Appl. Anal., 2023, 26, 172–192. doi: 10.1007/s13540-022-00125-0 |
[40] | B. Zeng and S. Migórski, Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications, Comput. Math. Appl., 2018, 75, 89–104. doi: 10.1016/j.camwa.2017.08.040 |
[41] | S. D. Zeng and S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Commun. Nonli. Sci. Numer. Simul., 2018, 56, 34–48. doi: 10.1016/j.cnsns.2017.07.016 |
[42] | J. Zhang and J. R. Wang, Numerical analysis for Navier-Stokes equations with time fractional derivatives, Appl. Math. Comput., 2018, 336, 481–489. |
[43] | Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Company, Beijing, 2014. |
[44] | Y. Zhou and L. Peng, On the time-fractional Navier-Stokes equations, Comput. Math. Appl., 2017, 73, 874–891. doi: 10.1016/j.camwa.2016.03.026 |
[45] | Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier–Stokes equations and optimal control, Comput. Math. Appl., 2017, 73, 1016–1027. |
[46] | G. A. Zou, G. Y. Lv and J. L. Wu, Stochastic Navier-Stokes equations with Caputo derivative driven by fractional noises, J. Math. Anal. Appl., 2018, 461, 595–609. doi: 10.1016/j.jmaa.2018.01.027 |