2024 Volume 14 Issue 3
Article Contents

Liang-Bin Shen, Bang-Sheng Han. PROPAGATING TERRACE IN A PERIODIC REACTION-DIFFUSION EQUATION WITH CONVECTION[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1395-1413. doi: 10.11948/20230239
Citation: Liang-Bin Shen, Bang-Sheng Han. PROPAGATING TERRACE IN A PERIODIC REACTION-DIFFUSION EQUATION WITH CONVECTION[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1395-1413. doi: 10.11948/20230239

PROPAGATING TERRACE IN A PERIODIC REACTION-DIFFUSION EQUATION WITH CONVECTION

  • In this paper, we study the asymptotic properties of the solution for a space periodic reaction-diffusion equation with convection term. Firstly, we introduce the zero-number parameter method to compare the steepness of different solutions, so as to obtain the convergence of solution and the existence of the minimal propagating terrace. To be exact, the minimal propagating terrace is composed of individual pulsating traveling waves. By constructing the $ \omega $-limit set, we prove that the existence of pulsating traveling waves. Secondly, the stability theory is a necessary condition for the existence of the propagating terrace. Contrary to conventional conclusions, there we first consider extend the stability theory of the classical reaction-diffusion equation to the reaction-diffusion equation with convection term, and through constructing the Cauchy problem of the initial boundary value to solve the stability problem of the equation solution. Besides, we are especially concerned with the minimal propagating terrace existence, uniqueness, and their spatial structure.

    MSC: 35B35, 35K15, 35K57, 92D25
  • 加载中
  • [1] N. Alikakos, P. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 1999, 351, 2777–2805. doi: 10.1090/S0002-9947-99-02134-0

    CrossRef Google Scholar

    [2] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 1988, 390, 79–96.

    Google Scholar

    [3] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 1983, 44.

    Google Scholar

    [4] M. -X. Chang, B. -S. Han and H. -J. Wu, Pyramidal traveling waves around an obstacle, Nonlinear Anal. Real World Appl., 2024, 76, Paper No. 104020, 19 pp.

    Google Scholar

    [5] G. -S. Chen and S. -L. Wu, Pulsating type entire solutions originating from three fronts for a bistable reaction–advection–diffusion equation in periodic media, Nonlinear Analysis: Real World Applications, 2019, 50, 498–518.

    Google Scholar

    [6] B. Contri, Pulsating fronts for bistable on average reaction-diffusion equations in a time periodic environment, J. Math. Anal. Appl., 2016, 437, 90–132. doi: 10.1016/j.jmaa.2015.12.030

    CrossRef Google Scholar

    [7] W. Ding and T. Giletti, Admissible speeds in spatially periodic bistable reaction-diffusion equations, Adv. Math., 2021, 389, Paper No. 107889, 50 pp.

    Google Scholar

    [8] W. Ding and H. Matano, Dynamics of time-periodic reaction-diffusion equations with compact initial support on $\mathbb{R}$, arXiv: 1807.04146, 2018, preprint.

    Google Scholar

    [9] W. Ding and H. Matano, Dynamics of time-periodic reaction-diffusion equations with front-like initial data on $\mathbb{R}$, arXiv: 1909.12480, 2019, preprint.

    Google Scholar

    [10] Y. Du and H. Matano, Radial terrace solutions and propagation profile of multistable reaction-diffusion equations over $\mathbb{R}. {N}$, arXiv: 1711.00952, 2017, preprint.

    Google Scholar

    [11] A. Ducrot, T. Giletti and H. Matano, Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations, Trans. Amer. Math. Soc., 2014, 366, 5541–5566. doi: 10.1090/S0002-9947-2014-06105-9

    CrossRef Google Scholar

    [12] P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 1977, 65, 335–361. doi: 10.1007/BF00250432

    CrossRef Google Scholar

    [13] P. Fife and J. McLeod, A phase plane discussion of convergence to traveling fronts for nonlinear diffusion, Arch. Ration. Mech. Anal., 1981, 75, 281–314. doi: 10.1007/BF00256381

    CrossRef Google Scholar

    [14] T. Giletti and H. Matano, Existence and uniqueness of propagating terraces, arXiv: 1906.01390v1, 2018, preprint.

    Google Scholar

    [15] T. Giletti and L. Rossi, Pulsating solutions for multidimensional bistable and multistable equations, arXiv: 1901.07256, 2017, preprint.

    Google Scholar

    [16] B. -S. Han, Z. Feng and W. -J. Bo, Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 2021, 103, Paper No. 105990, 21 pp.

    Google Scholar

    [17] B. -S. Han and D. -Y. Kong, Propagation dynamics of a nonlocal reaction-diffusion system, Discrete Contin. Dyn. Syst., 2023, 43(7), 2756–2780. doi: 10.3934/dcds.2023028

    CrossRef Google Scholar

    [18] D. -Y. Kong and B. -S. Han, Long-time asymptotic behavior of Fisher-KPP equation for nonlocal dispersal in asymmetric kernel, J. Appl. Anal. Comput., 2023, 13(5), 2659–2669.

    Google Scholar

    [19] X. Liang, Y. Yi and X. -Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 2006, 231, 57–77. doi: 10.1016/j.jde.2006.04.010

    CrossRef Google Scholar

    [20] X. Liang and X. -Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 2007, 60, 1–40. doi: 10.1002/cpa.20154

    CrossRef Google Scholar

    [21] H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., 1978, 18, 221–227.

    Google Scholar

    [22] H. Matano and P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part Ⅰ: A general quasiconvergence theorem and its consequences, Comm. Partial Differential Equations, 2016, 41, 785–811. doi: 10.1080/03605302.2016.1156697

    CrossRef Google Scholar

    [23] P. Poláčik, Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on $\mathbb{R}$, Mem. Amer. Math. Soc., 2018, preprint.

    Google Scholar

    [24] P. Poláčik, Threshold solutions and sharp transitions for nonautonomous parabolic equa- tions on $\mathbb{R}. {N}$, Arch. Ration. Mech. Anal., 2011, 199, 69–97. doi: 10.1007/s00205-010-0316-8

    CrossRef $\mathbb{R}.{N}$" target="_blank">Google Scholar

    [25] P. Poláčik, Examples of bounded solutions with nonstationary limit profiles for semilinear heat equations on $\mathbb{R}$, J. Evol. Equ., 2015, 15, 281–307. doi: 10.1007/s00028-014-0260-4

    CrossRef $\mathbb{R}$" target="_blank">Google Scholar

    [26] P. Poláčik, Threshold behavior and non-quasiconvergent solutions with localized ini- tial data for bistable reaction-diffusion equations, J. Dynam. Differential Equations, 2016, 28, 605–625. doi: 10.1007/s10884-014-9421-y

    CrossRef Google Scholar

    [27] P. Poláčik, Propagating terraces in a proof of the Gibbons conjecture and related results, J. Fixed Point Theory Appl., 2017, 19, 113–128. doi: 10.1007/s11784-016-0343-7

    CrossRef Google Scholar

    [28] P. Poláčik, Planar propagating terraces and the asymptotic one-dimensional symmetry of solutions of semilinear parabolic equations, SIAM J. Math. Anal., 2017, 49, 3716–3740. doi: 10.1137/16M1100745

    CrossRef Google Scholar

    [29] J. -M. Roquejoffre, D. Terman, and V. Volpert, Global stability of traveling fronts and conver- gence towards stacked families of waves in monotone parabolic systems, SIAM J. Math. Anal., 1996, 27, 1261–1269. doi: 10.1137/S0036141094267522

    CrossRef Google Scholar

    [30] W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities I. Stability and uniqueness, J. Differential Equations, 1999, 159, 1–54. doi: 10.1006/jdeq.1999.3651

    CrossRef Google Scholar

    [31] W. Shen, Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations, J. Dyn. Diff. Equations, 2011, 23, 1–44. doi: 10.1007/s10884-010-9200-3

    CrossRef Google Scholar

    [32] W. Shen and Z. Shen, Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type, Trans. Amer. Math. Soc., 2017, 369(4), 2573–2613.

    Google Scholar

    [33] W. Shen and Z. Shen, Transition fronts in time heterogeneous and random media of ignition type, J. Differential Equations, 262, (2017), 454–485.

    Google Scholar

    [34] W. Shen and Z. Shen, Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity, Discrete Contin. Dyn. Syst., 2017, 37, 1013–1037. doi: 10.3934/dcds.2017042

    CrossRef Google Scholar

    [35] A. Volpert, V. Volpert, and V. Volpert, Traveling wave solutions of parabolic systems, Translations of Mathematical Monographs, vol. 140, American Mathematical Society, Providence, RI, 1994.

    Google Scholar

    [36] V. Volpert, Asymptotic behavior of solutions of a nonlinear diffusion equation with a source of general form, Sibirsk. Mat. Zh., 1989, 30, 35–47.

    Google Scholar

    [37] Y. -H. Wang and Z. -C. Wang, Propagating terrace and asymptotic profile to time-periodic reaction-diffusion equations, arXiv 1901.05143v2, 2019, preprint.

    Google Scholar

    [38] P. -A. Zhang and W. -T. Li, Uniqueness of monostable pulsating wave fronts for time periodic reaction–diffusion equations, Applied Mathematics and Computation, 2012, 219, 1300–1305. doi: 10.1016/j.amc.2012.07.037

    CrossRef Google Scholar

Article Metrics

Article views(1099) PDF downloads(279) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint