2024 Volume 14 Issue 2
Article Contents

Ai Ke, Jibin Li. EXACT SOLUTIONS AND DYNAMICS OF KUNDU-MUKHERJEE-NASKAR MODEL[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1014-1022. doi: 10.11948/20230265
Citation: Ai Ke, Jibin Li. EXACT SOLUTIONS AND DYNAMICS OF KUNDU-MUKHERJEE-NASKAR MODEL[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1014-1022. doi: 10.11948/20230265

EXACT SOLUTIONS AND DYNAMICS OF KUNDU-MUKHERJEE-NASKAR MODEL

  • Author Bio: Email: aike_math@zjnu.edu.cn(A. Ke)
  • Corresponding author: Email: lijb@zjnu.cn(J. Li)
  • Fund Project: This research was partially supported by the National Natural Science Foundations of China (11871231, 12071162, 11701191) and Post Doctor Start-up Foundation of Zhejiang Normal University (YS304023914)
  • For the Kundu-Mukherjee-Naskar model, to find its exact explicit solutions, it is necessary to analyze the dynamical behaviors of the corresponding differential system of the amplitude component, which is a planar dynamical system with a singular straight line. In this paper, by using the techniques from dynamical systems to analyze the parameter conditions of system and find the corresponding phase portraits, the dynamical behaviors of the amplitude component can be derived. Under different parameter conditions, exact explicit homoclinic solutions, periodic solution families as well as kink and anti-kink wave solutions can be found.

    MSC: 34C23, 35Q51-53, 58j55
  • 加载中
  • [1] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971.

    Google Scholar

    [2] R. Camassa and D. D. Holm, An integrable shallow water equation with peak solutions, Phys. Rev. Lett., 1993, 71(11), 1161–1164.

    Google Scholar

    [3] R. Camassa, J. M. Hyman and B. P. Luce, Nonlinear waves and solitons in physical sysytems, Phys. D, 1998, 123(1–4), 1–20. doi: 10.1016/S0167-2789(98)00108-0

    CrossRef Google Scholar

    [4] A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theoret. Math. Phys., 2002, 133(2), 1463–1474. doi: 10.1023/A:1021186408422

    CrossRef Google Scholar

    [5] A. Degasperis and M. Procesi, Asymptotic integrability, in: A. Degasperis, G. Gaeta(Eds. ), Symmetry and Perturbation Theory, World Scientific, Singapore, 1999, 23–37.

    Google Scholar

    [6] A. S. Fokas, On class of physically important integrable equations, Phys. D, 1995, 87, 145–150. doi: 10.1016/0167-2789(95)00133-O

    CrossRef Google Scholar

    [7] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [8] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifur. Chaos, 2007, 17(11), 4049–4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [9] J. Li and Z. Qiao, Peakon, pseudo-peakon, and cuspon solutions for two generalized Camassa-Holm equations, J. Math. Phys., 2013, 54, 123501. doi: 10.1063/1.4835395

    CrossRef Google Scholar

    [10] J. Li, W. Zhou and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifur. Chaos, 2016, 26(12), 1650207. doi: 10.1142/S0218127416502072

    CrossRef Google Scholar

    [11] V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 2009, 42, 342002. doi: 10.1088/1751-8113/42/34/342002

    CrossRef Google Scholar

    [12] P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, J. Phys. A: Math. Theor., 1996, 53(2), 1900–1906.

    Google Scholar

    [13] Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. of Mathematical Physics, 2006, 47, 112701. doi: 10.1063/1.2365758

    CrossRef Google Scholar

    [14] Z. Qiao, New integrable hierarchy, parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solutions, J. of Mathematical Physics, 2007, 48, 082701. doi: 10.1063/1.2759830

    CrossRef Google Scholar

    [15] H. Triki, A. Benlallia, Q. Zhou, A. Biswasd, Y. Yıldırımh, A. Alzahranii and M. Belic, Gray optical dips of Kundu-Mukherjee-Naskar model, Phys. Lett. A, 2021, 401, 127341. doi: 10.1016/j.physleta.2021.127341

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(1152) PDF downloads(243) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint