2024 Volume 14 Issue 4
Article Contents

H. I. Abdel-Gawad, B. Abdel-Aziz, M. Tantawy. EXTENDED CENTER MANIFOLD, GLOBAL BIFURCATION AND APPROXIMATE SOLUTIONS OF CHEN CHAOTIC DYNAMICAL SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2125-2139. doi: 10.11948/20230308
Citation: H. I. Abdel-Gawad, B. Abdel-Aziz, M. Tantawy. EXTENDED CENTER MANIFOLD, GLOBAL BIFURCATION AND APPROXIMATE SOLUTIONS OF CHEN CHAOTIC DYNAMICAL SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2125-2139. doi: 10.11948/20230308

EXTENDED CENTER MANIFOLD, GLOBAL BIFURCATION AND APPROXIMATE SOLUTIONS OF CHEN CHAOTIC DYNAMICAL SYSTEM

  • The study of the chaotic Chen dynamic System (CDS) has been a recent focus in the literature, with numerous works exploring its various chaotic features. However, the majority of these studies have relied primarily on numerical techniques to investigate nonlinear dynamic systems (NLDSs). In this context, our aim is to derive approximate analytical solutions for the CDS by developing an iterative scheme. We have proven the convergence theorem for this scheme, which ensures that our iterative process will converge to the exact solution. Additionally, we introduce a new method for constructing the extended center manifold, a critical component in the analysis of dynamical systems. The characteristics of the global bifurcation of the system components within the parameter space are explored. The error analysis of the iterated solutions demonstrates the efficiency of the present technique. We present both three-dimensional (3D) and two-dimensional (2D) phase portraits of the system. The 3D portrait reveals a feedback loop pattern, while the 2D portrait, which represents the interaction of the system components, exhibits multiple pools and cross pools. Furthermore, we illustrate the global bifurcation by visualizing the components of the CDS against the space-parameters. The sensitivity of CDS to infinitesimal variations in the initial conditions (ICs) is tested. It is found that even minor changes can lead to significant alterations in the system.

    MSC: 34A34, 34F10, 34E18, 34C40, 34K28
  • 加载中
  • [1] H. I. Abdel-Gawad, Approximate-analytic optical soliton solutions of a modifed-Gerdjikov–Ivanov equation: Modulation instability, Opt. Quant. Elect., 2023, 55, 298. doi: 10.1007/s11082-023-04566-6

    CrossRef Google Scholar

    [2] H. I. Abdel-Gawad, M. Tantawy and A. M. Abdelwahab, Approximate solutions of fractional dynamical systems based on the invariant exponential functions with an application. A novel double-kernel fractional derivative, Alex. Eng. J., 2023, 77, 341–350. doi: 10.1016/j.aej.2023.06.044

    CrossRef Google Scholar

    [3] M. F. Alotaibi, N. Raza, M. H. Rafiq and A. Soltani, New solitary waves, bifurcation and chaotic patterns of Fokas system arising in monomode fiber communication system, Alex. Eng. J., 2023, 67, 583–595. doi: 10.1016/j.aej.2022.12.069

    CrossRef Google Scholar

    [4] M. Alqhtani, R. Srivastava, H. I. Abdel-Gawad, J. E. Macías-Díaz, K. M. Saad and W. M. Hamanah, Insight into functional Boiti–Leon–Mana–Pempinelli equation and error control: Approximate similarity solutions, Mathematics, 2023, 11(22), 4569. doi: 10.3390/math11224569

    CrossRef Google Scholar

    [5] V. Berinde, Picard iteration conver, ges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theo. Applicat., 2004, 716359.

    Google Scholar

    [6] S. Bouali, A novel strange attractor with a stretched loop, Nonlinear Dyn., 2012, 70, 2375–2381. doi: 10.1007/s11071-012-0625-6

    CrossRef Google Scholar

    [7] S. Cang, G. Qi and Z. Chen, A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system, Nonlinear Dyn., 2010, 59, 515–527. doi: 10.1007/s11071-009-9558-0

    CrossRef Google Scholar

    [8] S. Cang, L. Wang, Y. Zhang, Z. Wang and Z. Chen, Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator, Chaos Solitons Fractals, 2022, 158, 112016. doi: 10.1016/j.chaos.2022.112016

    CrossRef Google Scholar

    [9] M. D. Chekroun, Il. Koren and H. Liu, Efficient reduction for diagnosing Hopf bifurcation in delay differential systems: Applications to cloud-rain models, Chaos, 2020, 30, 053130. doi: 10.1063/5.0004697

    CrossRef Google Scholar

    [10] K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, 1984.

    Google Scholar

    [11] K. Fallahi, R. Raoufi and H. Khoshbin, An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm, Commun. Nonl. Sci. Numer. Simul., 2008, 13(4), 763–781. doi: 10.1016/j.cnsns.2006.07.006

    CrossRef Google Scholar

    [12] V. R. Folifack Signing, G. A. Gakam Tegue, M. Kountchou, Z. T. Njitacke, N. Tsafack, J. D. D. Nkapkop, C. M. Lessouga Etoundi and J. Kengne, A cryptosystem based on a chameleon chaotic system and dynamic DNA coding, Chaos Solitons Fractals, 2022, 155, 111777. doi: 10.1016/j.chaos.2021.111777

    CrossRef Google Scholar

    [13] C. Gissinger, A new deterministic model for chaotic reversals, Eur. Phys. J. B, 2012, 85, 137–148. doi: 10.1140/epjb/e2012-20799-5

    CrossRef Google Scholar

    [14] A. S. Gonchenko and S. V. Gonchenko, Variety of strange pseudohy perbolic attractors in three-dimensional generalized Hénon maps, Physica D Nonl. Pheno., 2016, 337(15), 43–57.

    Google Scholar

    [15] S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect, J. Diff. Eqs., 2016, 260(1), 781–817. doi: 10.1016/j.jde.2015.09.031

    CrossRef Google Scholar

    [16] M. Han, J. Llibre and Y. Tian, On the Zero-Hopf Bifurcation of the Lotka–Volterra Systems in R3, Mathematics, 2020, 8(7), 1137. doi: 10.3390/math8071137

    CrossRef Google Scholar

    [17] G.-D. Hu and Mingzhu Liu, The weighted logarithmic matrix normand bounds of the matrix exponential, Lie Algebra Appli., 2004, 390, 145–154. doi: 10.1016/j.laa.2004.04.015

    CrossRef Google Scholar

    [18] T. Kohda and K. Aihara, Chaos in discrete systems and diagnosis of experimental chaos, EICE Trams., 1990, E73(6), 772–783.

    Google Scholar

    [19] O. Leon, L. Kocaev, K. Eckert and M. Itoh, Experimental chaos synchronization in Chua's circuit, Int. J. Bifurcation Chaos, 1992, 02(03), 705–708. doi: 10.1142/S0218127492000811

    CrossRef Google Scholar

    [20] Y. Lin, C. Wang, H. He and L. L. Zhou, A novel four-wing non-equilibrium chaotic system and its circuit implementation, Paramana, 2016, 86(4), 801–807. doi: 10.1007/s12043-015-1118-1

    CrossRef Google Scholar

    [21] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20(2), 130–140. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    CrossRef Google Scholar

    [22] J. Lü, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcation and Chaos, 2002, 12(12), 2917–2926. doi: 10.1142/S021812740200631X

    CrossRef Google Scholar

    [23] M. Mossa Al-Sawalha and M. S. M. Noorani, A numeric–analytic method for approximating the chaotic Chen system, Chaos, Solitons and Fractals, 2009, 42, 1784–1791. doi: 10.1016/j.chaos.2009.03.096

    CrossRef Google Scholar

    [24] V. T. Pham, C. Volos, S. Jafari and T. Kapitaniak, Coexistence of hidden chaotic attractors in a novel no-equilibrium system, Nonlinear Dyn., 2017, 87, 2001–2010. doi: 10.1007/s11071-016-3170-x

    CrossRef Google Scholar

    [25] V.-T. Pham, X. Wang, S. Jafari, C. Volos and T. Kapitaniak, From Wang–Chen system with only one stable equilibrium to a new chaotic system without equilibrium, Int. J. Bifurcation and Chaos, 2017, 27(6), 1750097. doi: 10.1142/S0218127417500973

    CrossRef Google Scholar

    [26] E. Ponce, J. Ros and F. Torres, On the fold-Hopf bifurcation for continuous piecewise linear differential systems with symmetry Jaume Llibre, Chaos, 2010, 20, 033119. doi: 10.1063/1.3486073

    CrossRef Google Scholar

    [27] Y. Ren, B. Zhang and H. Qiao, A simple Taylor-series expansion method for a class of second kind integral equations, J. Comput. Appl. Math., 1999, 110(1), 15–24. doi: 10.1016/S0377-0427(99)00192-2

    CrossRef Google Scholar

    [28] O. E. Rossler, Different types of chaos in two simple differential equations, Z. Naturforsch, 1976, 31, 1664–1670. doi: 10.1515/zna-1976-1231

    CrossRef Google Scholar

    [29] D. Ruelle, Chaotic Evolution and Strange Attractors, Cambridge University Press, 1989.

    Google Scholar

    [30] D. A. Russell, J. D. Hanson and E. Ott, Dimension of strange attractors, Phys. Rev. Lett., 1980, 45, 1175. doi: 10.1103/PhysRevLett.45.1175

    CrossRef Google Scholar

    [31] A. A. Śliwiak, N. Chandramoorthy and Q. Wang, Computational assessment of smooth and rough parameter dependence of statistics in chaotic dynamical systems, Commun. Nonl. Sci. Numer. Simul., 2021, 101, 105906. doi: 10.1016/j.cnsns.2021.105906

    CrossRef Google Scholar

    [32] H. Su and J. Xu, Time-delayed sampled-data feedback control of differential systems undergoing hopf bifurcation, Int. J. Bifur. Chaos, 2021, 31(01), 2150004. doi: 10.1142/S0218127421500048

    CrossRef Google Scholar

    [33] H. S. Tang, R. D. Haynes and G. Houzeaux, A review of domain decomposition methods for simulation of fluid flows: Concepts, algorithms, and applications, Arch. Comput. Meth. Eng., 2021, 28, 841–873. doi: 10.1007/s11831-019-09394-0

    CrossRef Google Scholar

    [34] Y. Tian and P. Yu, An explicit recursive formula for computing the formal form and center manifold for n-dimensional differential systems associated with hopf bifurcation, Int. J. Bifur Chaos, 2013, 23(06), 1350104. doi: 10.1142/S0218127413501046

    CrossRef Google Scholar

    [35] C. C. Tisdell, On Picard's iteration method to solve differential equations and a pedagogical space for otherness, Int. J. Math. Edu. Sci. Tech., 2019, 50(5), 788–799. doi: 10.1080/0020739X.2018.1507051

    CrossRef Google Scholar

    [36] N. B Tullaro, T. Abbott and J. P. Reil, An Experimental Approach to Nonlinear Dynamics and Chaos, Addison Wesley, 1992.

    Google Scholar

    [37] M. Yassen, The optimal control of Chen chaotic dynamical system, Appl. Math. Comput., 2002, 131(1), 171–180.

    Google Scholar

    [38] M. T. Yassen, Chaos control of Chen chaotic dynamical system, Chaos Solitons Fractals, 2003, 15(2), 271–283.

    Google Scholar

    [39] M. Zaid Odibat, A study on the convergence of variational iteration method, Math. Comput. Model., 2010, 51(9), 1181–1192.

    Google Scholar

    [40] T. Zhou and Y. Tang, Complex dynamical behaviors of the chaotic Chen's system, Int. J. Bifurcation and Chaos, 2003, 13(9), 2561–2574.

    Google Scholar

Figures(5)  /  Tables(1)

Article Metrics

Article views(987) PDF downloads(371) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint